
RELLkBILITY ALW PRODUCTIVITY MODELING FOR THE OPTIMIZATION OF
SEPAR4TED SPACECRAFT INTERFEROMETERS

May, 2002

Julie Wertz. David Miller

SSL Report # 9-02

Massachusetts Cambridge
Institute of Massachusetts
Technology 021 39

Reliability and Productivity Modeling for the Optimization of Separated
Spacecraft Interferometers

by

Julie Wertz

S.B., Aeronautical and Astronautical Engineering
Massachusetts Institute of Technology, 2000

SUBMIlTED TO THE DEPARTMENT OF AERONAUTICAL AND
ASTRONAUTICAL ENGI"G

IN PARTIAL FULFILLMENT OF THE DEGREE OF

MASTER OF SCIENCE

at the

MASSACHUSETI'S INSTITUTE OF TECHNOLOGY

May 2002

@ 2002 Massachusetts Institute of Technology
All rights reserved

Signature of Author. ...
Department of Aeronautics and Astronautics

May 24,2002

Certifiedby ..
David W. Miller

Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by. ...
Wallace E. Vander Vel&

Professor of Aeronautics and Astronautics
Chair, Committee on Graduate Students

Reliability and Productivity Modeling for the Optimization of Separated
Spacecraft Interferometers

Submitted to the Department of Aeronautics and Astronautics
on May 24,2002 in Partial Fulfillment of the

Requirements for the Degree of Master of Science
at the Massachusetts Institute of Technology

ABSTRACT

As technological systems grow in capability, they also grow in complexity. Due to this
complexity, it is no longer possible for a designer to use engineering judgement to identify
the components that have the largest impact on system life cycle metrics, such as reliabil-
ity, productivity, cost, and cost effectiveness. One way of identifying these key compo-
nents is to build quantitative models and analysis tools that can be used to aid the designer
in making high level architecture decisions. Once these key components have been identi-
fied, two main approaches to improving a system using these components exist: add
redundancy or improve the reliability of the component. In reality, the most effective
approach to almost any system will be some combination of these two approaches, in
varying orders of magnitude for each component. Therefore, this research tries to answer
the question of how to divide funds, between adding redundancy and improving the reli-
ability of components, to most cost effectively improve the life cycle metrics of a system.
While this question is relevant to any complex system, this research focuses on one type of
system in particular: Separate Spacecraft Interferometers (SSI). Quantitative models are
developed to analyze the key life cycle metrics of different SSI system architectures.
Next, tools are developed to compare a given set of architectures in terms of total perfor-
mance, by coupling different life cycle metrics together into one performance metric.
Optimization tools, such as simulated annealing and genetic algorithms, are then used to
search the entire design space to find the “optimal” architecture design. Sensitivity analy-
sis tools have been developed to determine how sensitive the results of these analyses are
to uncertain user defined parameters. Finally, several possibilities for the future work that
could be done in this area of research are presented.

Thesis Supervisor:
Prof. David W. Miller
Dept. of Aeronautics and Astronautics

3

4 ABSTRACT

ACKNOWLEDGLMENTS

This research was funded by both the Langley Research Center's Risk Based De ign Pro-
gram, techinical monitor Sean Kenny, and the Lockheed Martin Terrestrial Planet Finder
Team, technical monitor Domenick Tenerelli.

There are several people I would like to thank for their direct impact on this work:

David Miller, my advisor, for all his work and support. His love of engineer-
ing and problem solving is always inspiring.
Cyrus Jilla, for being a great mentor. Thanks for all the help and support
you've given me throughout the past two years.
The JPL StarLight team, specifically Oliver Lay, Brian Barden, and Gary
Blackwood, for sharing their technical knowledge with me and giving me a
great learning experience.
Edmund Kong, Alice Liu, Becky Masterson, and Allen Chert for their tech-
nical advice.

In addition, there are several people I would like to thank for all of the support they gave
me during this work:

The SSL community, for all of their friendships. I feel very lucky to have so
much fun with the people I work with.
My quals studying buddies, Shannon and Al, for making me laugh, "getting
this party started", and keeping me going throughout January. You're two of
the most incredible people I have ever met, both intellectually and person-
ally, and you truly inspire me.
My family for all of their love and support. My sisters for listening to me
ramble on about engineering problems. My Mom for always encouraging
me, and for helping me with some difficult decisions. My Dad, for being the
best role model I could ask for, and for sharing his love of this business with
me. I'm very proud to be your daughter.
And finally, Al, for all of his constant love, friendship, and support. I am the
luckiest girl in the world. Thank you.

TABLE OF CONTENTS

Abstract . 3

Acknowledgments . 5

Table of Contents . 7

ListofFigures . 11

List of Tables . 15

Chapter 1 . Introduction . 19

1.1 Motivation . 20

1.2 Problem Statement . 23

1.3 Research Objective and Expected Results 25

Chapter 2. Separated Spacecraft Interferometry 27
2.1 Separated Spacecraft Interferometry Background 27

2.1.1 Visibility . 31

2.1.3 Imaging . 41
2.1.4 Broadband Light . 42

2.2 Separated Spacecraft Interferometry Model 44

2.3 Chapter Summary . 46

2.1.2 Resolution . 37

Chapter 3 . Model development . 47

3.1.1 Automatic Generation of State-transition Matrix 48
3.1.2 Verification . 54

3.2.1 Discrete A matrix . 58

3.1 State-transition Matrix . 47

3.2 Productivity Model . 55

3.2.2 LaplaceMethods . 59
3.2.3 Comparison of Methods . 60
3.2.4 Benchmarking . 61
3.2.5 Case Studies . 63

3.3 CostModel . 64

7

8 TABLE OF CONTENTS

68 3.4 Reliability Model .
3.4.1 Estimating Reliability . 68
3.4.2 Improving Reliability . 69

3.6 Chaptersummary . 72

. 3.5 Results 70

. Chapter 4 . Architecture Comparison Based on Total Performance 75
4.1 Total Performance . 76

4.1.1 “Score” Metric Formulation . 76
4.1.2 Results . 80

4.2 Reliability Optimization . 83
4.2.1 Optimization Problem Formulation 85
4.2.2 Results . 86

4.3 Chaptersummary . 101

Chapter 5 . System Optimization and Results 103

5.1 Heuristic Algorithms . 104
5.1.1 Simulated Annealing . 105
5.1.2 Genetic Algorithms . 116

5.2 Sensitivity Analysis . 128

5.3 Chaptersummary . 137

Chapter 6 . Conclusion . 139

6.1 Contributions . 141

6.2 Future Work . 144

References . 147

Appendix A . ReliabilityandProductivity ToolboxSource Code 149

A.l “state.m” . 149

A.2 “DV-to-J.m” . 152

A.3 “cost-mode1.m” . 157

A.4 “arch-comparison.m” . 159

A S “opim-reliability-w-test.m” . 161

A.6 “sim-annea1ing.m” . 166

A.7 “JGA.m” . 171

TABLE OF CONTENTS 9

A.8 “sensitivity.m” . 174

Appendix B . Modifications to GAOT Toolbox 179

Appendix C . Optimization Results . 181

C . 1 Simulated Annealing . 181

C.2 Genetic Algorithm . 184

Appendix D . Sensitivity Analysis Results . 1%

Appendix E. Matlab Toolbox Description . 201

LIST OF FIGURES

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

Figure 2.7

Figure 2.9

Figure 2.8

Figure 2.10

Figure 2.11

Figure 2.12

Figure 2.13

Figure 2.14

Figure 2.15

Figure 2.16

Figure 2.17

Figure 2.18

Figure 2.19

Figure 3.1

Figure 3.2

Photon rates for a single aperture optical telescope 28
. 29 Difference between a circular aperture and a square aperture

interferometer showing the effects of varying baselines 30
a) Photon rates for a single baseline interferometer . b) Photon rates for an

Definition of angle in the sky . 31

Photon rates for an interferometer. seen as the pattern a target would make in
the focal plane . 32

Collecting light from multiple points in an interferometer 32

Photon rates from multiple points of light 33
Photon rates from multiple points of light 34

Visibility calculation definitions . 34

Visibility comparison for up to 4 points 35

4 points of light separated by 0.2 units (Figures 2.7, 2.9, and 2.10 are sepa-
rated by 1.6 units) . a) Photon rates . b) Total photon rates . c) Visibility com-
parison . 36

Relationship between visibility. baseline. and target size 37

Visibility calculation definitions . 38

Example of a resolved out star . 30 points separated by 0.2 units . a) Photon
39

Visibility for a binary system . 40

Resolving a target’s shape . 42

rates . b) Total Photon rates . c) Visibility comparison

Sample UV-plane . 42

wavelength components and the black line is the sum
Photon rates for broadband light . The red and blue lines are individual

43

Photon rate for white light . 44
Markov Model and corresponding A matrix for a sample system of three
dual functioning spacecraft. one combining spacecraft. and one collecting
spacecraft . 50

Comparison of productivity calculated using the automatically generated A
matrix. the original handentered A matrix. and the corrected handentered A
matrix . 56

11

12 LIST OF FIGURES

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 4.1

Figure 4.2

Figure 4.4

Figure 4.3

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Case study 1 - Different combinations of a total of 15 spacecraft. Systems
considered operational down to 4 collecting spacecraft and 1 combining

Case study 2 - Combinations of six total spacecraft. Number of baselines
considered number of two collecting spacecraft, one combining spacecraft

Model of how money spent to improve reliability is translated to actual reli-

Productivity modeling results. a) Number of images. b) Cost per image. c)

Case Study 1 - combinations of 6 total spacecraft. a) Number of Images b)
Reliability c) Cost per Image d) “Score”. See Table 4.1 for Architecture
Key . 80

Case Study 2 - combinations of 4 total spacecraft. a) Number of Images b)
Reliability c) Cost per Image d) “Score”. See Table 4.2 for Architecture
Key . 82

Initial results of division of money to improve component reliabilities for the
case study with architectures with a total of six spacecraft and 20% of the
initial system cost being spent on improving component’s reliabilities. 88

Tuning data for simulated annealing algorithm to optimize distribution of
money to improve different component reliabilities for a total system budget

Final results of division of money to improve component’s reliabilities for
the case study with architectures with a total of six spacecraft and 20% of the
initial system cost being spent on improving component’s reliabilities. 92

“Score” metrics for architectures in the case study of combinations of six
total spacecraft with 20% of the initial system cost spent on improving com-
ponent reliabilities both before and after architectures one and four were re-
run. 94

Final results for case study of combinations of six total spacecraft with 20%
of initial system cost spent on improving component reliabilities. a)
Expected total number of images for each architecture. b) Reliability for
each architecture. c) Expected cost per image for each architecture. d)
“Score” metrics for each architecture. 95

Initial results of division of money to improve component reliabilities for the
case study with architectures with a total of four spacecraft and a total sys-

Final results of division of money to improve component reliabilities for the
case study with architectures with a total of four spacecraft and a total sys-
tem budget of $280M. 99

spacecraft. 64

pairs. 65

ability improvement . 70

Reliability. See Table 3.5 for architecture key. 71

of a) $280M and b)$400M. 88

tem budget of $280M. 96

LIST OF FIG= 13

Figure 4.10

Figure 4.11

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10

Figure 5.11

Final results for case study of combinations of four total spacecraft with a
total system budget of $280M. a) Expected total number of images for each
architecture. b) Reliability for each architecture. c) “Score” metrics for each
architecture. 100

“Score” metrics for architectures in the case study of combinations of four
total spacecraft with a total system budget of $280M both before and after
architectures four, six, and nine were re-run. 101

Example of neighboring design vectors. The 3 lower design vectors are all
neighbors to the top design vector with 2 degrees of freedom. Only the fmt
and second design vectors are neighbors however if the degrees of freedom
is set to 1. 106

Simulated annealing tuning data for a) Initial guess at difference in objective
function between two neighbors and b) number of steps down in tempera-
ture. 113

Simulated annealing convergence data 114

Tuning data for genetic algorithms optimization scheme for a) crossover rate

Genetic algorithms (mutation rate = 0.1) convergence history - a) maximum
and mean objective function for each generation, b) maximum objective
function for each generation. 125

Design space exploration by genetic algorithms (mutation rate = 0.1). Red
dot is solution repted as “optimal”. 126

Mutationratetuninginformation withfullcasestudies. 127

Sensitivity analysis results for zero dual functioning, two combining, and
five collecting spacecraft architecture with no money spent on improving
reliabilities. 130

Detailed sensitivity analysis for mission lifetime versus expected total num-
ber of images (NoI) . 131

Sensitivity analysis for both 0 dual functioning, 2 combining, and 5 collect-
ing spacecraft and 1 dual functioning, 1 combining, and 4 collecting space-
craft architectures. Sensitivity of objective function value to a) combining
optics failure rate, b) number of pairs of W points needed per image, c)

. 133

Sensitivity analysis for both 0 dual functioning, 2 combining, and 5 collect-
ing spacecraft and 1 dual functioning, 1 combining, and 4 collecting space-
craft architectures when money spent to improve reliabilities of components
is included in the design vector. Sensitivity of objective function value to a)
dual functioning spacecraft bus failure rate, b) scale factor used to map
money spent to improvement in reliability, c) weight of cost per image in

and b) mutation rate. 122

learning curve slope, and d) dual bus failure rate.

objective function value, and d) learning curve slope. 135

14 LIST OF FIGURES

Figure D. 1

Figure D.2

Sensitivity analysis of the architectures given above, defined by only the
number of each type of spacecraft.

Sensitivity analysis of the architectures given above, defined by both the
number of each type of spacecraft and the money spent to improve compo-
nent reliabilities. 199

. 196

LIST OF TABLES

TABLE 3.1

TABLE 3.2

TABLE 3.3

TABLE 3.4

TABLE 3.5
TABLE 4.1

TABLE 4.2

TABLE 4.3

TABLE 4.4

TABLE 4.5

TABLE 4.6

Comparison of A matrix and time needed to analyze A matrix when only
calling “state.m” if current state was not previously defined (with extra rule)
and always calling “state.m” if operational rules hold (no extra rule). . 53
General Laplace rules . 59

Comparison of discrete A matrix and Laplace methods to find the produc-
tivity of a system . 61

Parameter study of results returned from productivity model 62

Architecture key for case study shown in Figure 3.6 72
Architecture key for case study 1. 81

Architecture key for case study 2. 82

Architectures from case study of combinations of six total spacecraft with
20% of initial system cost spent on improving component reliabilities,
sorted in ascending order of the difference between the total number of
spacecraft capable of collecting light minus the total number of spacecraft
capable of combining light @iff.). Highlighted architectures have more
money spent on improving collecting optics than on improving combining
optics. 89

Architectures from the case study of combinations of six total spacecraft
with 20% of initial system cost spent on improving component reliabilities,
sorted in ascending order of number of dual functioning spacecraft. High-
lighted architectures have more money spent on improving the collecting or
combining optics than on improving the bus. 91

Final architectures from case study of combinations of six total spacecraft
with 20% of initial system cost spent on improving component reliabilities,
sorted in ascending order of the difference between the total number of
spacecraft capable of collecting light minus the total number of spacecraft
capable of combining light @iff.). Highlighted architectures have more
money spent on improving collecting optics than on improving combining

Final architectures from case study of combinations of six total spacecraft
with 20% of initial system cost spent on improving component reliabilities,
sorted in ascending order of number of dual functioning spacecraft. High-
lighted architectures have more money spent on improving the collecting or

optics. 93

the combining optics than on improving the bus. 94

15

16 LIST OF TABLES

TABLE 4.7

TABLE 4.8

TABLE 4.9

TABLE 5.1

TABLE 5.2

TABLE5.3

TABLE5.4

TABLE 5.5

TABLE5.6

TABLE5.7

TABLE 5.8

TABLE 6.1

Architectures from case study of combinations of four total spacecraft with
a total system budget of $280M, sorted in ascending order of the difference
between the total number of spacecraft capable of collecting light minus the
total number of spacecraft capable of combining light (Diff.). Highlighted
architectures have more money spent on improving the collecting optics

97

Architectures from case study of combinations of four total spacecraft with
a total system budget of $280M, sorted in ascending order of the number of
dual functioning spacecraft. Highlighted architectures have more money
spent on improving the collecting or combining optics than on improving
the bus. 98

Final architectures from case study of combinations of four total spacecraft
with a total system budget of $280M, sorted in ascending order of the dif-
ference between the total number of spacecraft capable of collecting light
mins the total number of spacecraft capable of combining light. High-
lighted architectures have more money spent on improving collecting optics
than on improving combining optics. 99

Simulated annealing algorithm tuning data. 113

Simulated Annealing Results . 115

Good architectures returned from simulated annealing. The first two are
within 97.5% of the “best” architecture’s objective function and vary by the
number of each type of spacecraft (the first architecture listed is the “best”
architecture), while the last 4 are within 99% of the “best” architecture’s
objective function but only vary by the money spent to improve different
component reliabilities. 116

Analogies between natural selection and genetic algorithms 119

Genetic algorithm results (mutation rate = 0.1) 123

Good architectures returned from genetic algorithms with mutation rate =
0.1. All architectures listed are within 97.5% of the “best” architecture’s
objective function and vary by the number of each type of spacecraft (the
first architecture listed is the “best” architecture). The algorithm also
returned over 240 architectures which are not shown here, with objective
functions within 99% of the “best” architecture’s objective function but
only vary from the “optimal” solution by the money spent on different com-
ponents. 124

Genetic algorithm results from three case studies for varying mutation rates.
Architectures shown are “optimal” architectures returned by the algorithm
for each mutation rate. 127

User defined parameters that affect the outcome of analysis results. . 129

File descriptions from Reliability and Productivity Matlab toolbox. . 143

than on improving the combining optics.

LIST OF TABLES 17

TABLE C.l

TABLE C.2

TABLE C.3

TABLE C.4

TABLE C.5

TABLE C.6

TABLE C.7

TABLE C.8

TABLE E.l

TABLE E.2

Simulated annealing optimization set-up 18 1

“Best” architecture returned by the simulated annealing optimization algo-
rithm. 182

Architectures returned by the simulated annealing algorithm with objective
values within 97.5% of the “optimal” but which also vary from the “opti-
mal‘‘ by the number of at least one type of spacecraft. Note that the first
architecture listed is the “optimal” architecture. 182

Architectures returned by the simulated annealing algorithm with objective
function values within 99% of “optimal”. Note that the first architecture
listed is the “optimal” architecture. 183

Genetic algorithm optimization set-up 184

“Best” architecture returned by the genetic algorithm. 184

Architectures returned by the genetic algorithm with objective values within
97.5% of the “optimal” but which also vary from the “optimal” by the num-
ber of at least one type of spacecraft. Note that the first architecture listed is
the “optimal” architecture. 185

Architectures returned by the genetic algorithm with objective function val-
ues within 99% of “optimal”. Note that the first architecture listed is the
“optimal” architecture. 188

Descriptions, major inputs, and major outputs of files in the Reliability and
productivity Matlab toolbox. 202
List of user-defined inputs for Reliability and Productivity toolbox . . 210

18 LIST OF TABLES

Chapter 1

INTRODUCTION

As technology progresses, systems are growing in both capability and complexity. This

trend is true for general technological systems, including but not limited to aerospace sys-

tems. Systems are becoming more multi-functional, involving the interaction and interfac-

ing of many subsystems and, often times, many engineering disciplines. For example,

distributed computer networks, linking computer and processing engineering to communi-

cations engineering, are many times more powerful than the single desktop computer of

only a few years ago. While this increased capability allows the systems of today, and the

future, to last longer and perform multiple, more difficult tasks at once, the increased com-

plexity makes these systems more difficult to design. Thus, a designer can no longer use

simple engineering judgement to directly see which components are crucial to the system

and should therefore be focused on during the design process. The effect of a failure in

one Subsystem on the system as a whole is no longer clear, and neither is the effect of

improving one Subsystem or component. The pure magnitude of the number of compo-

nents and interactions in these systems has made it nearly impossible to understand how

the system will behave without modeling.

Once models are developed for these systems, it is possible to optimize the design based

on the reliability of the system. The reliability of the system can be increased in one of

two ways: increasing redundancy or increasing the reliability of the components. How-

ever, reliability is not the only life cycle metric of interest to designers. Other metrics of

19

20 INTRODUCTION

interest include life cycle cost and productivity. The particular combination of redun-

dancy and improved reliability of components used in a system design will effect not only

the system reliability, but these other life cycle metrics as well. Therefore, this research

focuses on the question of where funds should be spent to either add redundancy or

improve the reliability of components, in order to achieve the best combination of life

cycle metrics possible.

1.1 Motivation

Future space missions are becoming increasingly complex and larger in scale, and are also

becoming more difficult to accomplish with single spacecraft. This has led many pro-

grams to examine the use of Distributed Satellite Systems (DSS). These systems use

smaller, multiple spacecraft to get the same benefits as one larger spacecraft [Shaw, Miller,

and Hastings, 20001. In addition to enabling complex and large systems, distributed satel-

lite systems also offer several other benefits. The spacecraft in a DSS cluster can be

smaller and less complex than single spacecraft counterparts. This can lead to shorter

development times and, in turn, reduced life cycle cost. Due to the modular design and

decentralized resources, these systems are both survivable and upgradable. Staged

deployment of a distributed satellite system can be beneficial in several ways. First, indi-

vidual satellites with technology readily available can be launched sooner, instead of wait-

ing for the technology needed to accomplish the entire mission to be ready. While in this

stage the system may not be complete, some scientific data may be able to be collected.

By using staged deployment, programs can also spread out both cost and risk. In addition,

older spacecraft can be interchanged individually with spacecraft containing new technol-

ogy. Lastly, if one spacecraft were to fail, that individual spacecraft could simply be

replaced without having to replace the entire cluster.

One of the areas in which distributed satellite systems could prove the most useful is

space-borne interferometers. NASA’s stated goals for future missions can no longer be

accomplished with single aperture telescopes. In particular, NASA’s Origins Program has

Motivation 21

the goal of finding, characterizing, and studying Earth-like planets around distant stars.

To accomplish the angular resolution required to achieve such goals, 100-meter or larger

single-aperture telescopes would be q u i d . To study these distant planets the light from

the nearby star will need to be blocked out. One possibility for accomplishing this is to

use nulling interferometry. Another powerful tool for future missions would be interfer-

ometers with variable baselines. Interferometers with smaller baselines are better for

resolving individual large targets, while interferometers with larger baselines are better for

resolving between two small targets. Therefore, an interferometer that could vary the

baseline depending on the observation and situation would be an extremely powerful tool.

One method of achieving a variable baseline interferometer is to put apertures on individ-

ual satellites and use a distributed satellite system. This type of interferometer is referred

to as a separated spacecraft interferometer and is being considered for several future mis-

sions.

Jet Propulsion Laboratory’s (PL) Terrestrial Planet Finder (TPF) will survey near-by stars

to detect, image, and characterize any Earth sized planets with atmospheres [JPL, TPF,

20011. TPF will use spectroscopy to characterize the atmospheres of the planets it finds,

to determine if there are any planets near Earth that have a high potential for life. This

mission is the next step in the exploration of the universe, and is considering using a mid-

IR separated spacecraft interferometer to achieve these goals. The Micro-Arcsecond X-
ray Imaging Mission (MAXIM) Pathfinder will lead the way for the MAXIM mission,

which will resolve the event horizon of black holes [GSFC, MAXIM, 20011. This has

several scientific implications including imaging black holes, testing the theory of relativ-

ity, and learning more about gravity. To achieve these goals, MAXIM Pathfinder will

need an instrument with an angular resolution of 100 micro-arcseconds, and will use an X-
ray separated spacecraft interferometer. Life Finder is the next mission in the ORIGINS

program, after TPF, and will be more sensitive version of it’s predecessor [JPL, LF, 20011.

Life Finder also does spectroscopy on the atmosphere, but this time looks for dips in

energy, which is a sign of life. A separated spacecraft interferometer is being considered

for this mission which will provide the first direct detection of life on other planets. The

22 INTRODUCTION

Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) will attempt to

answer the fundamental questions of how the universe began and how it evolved to where

it is today [GSFC, SPECS, 20011. It will accomplish this by observing the first and most

remote galaxies of the universe and taking measurements of protostars and developing

planetary systems in the Milky Way or nearby galaxies. A far-IR interferometer is pro-

posed to take these measurements on either separated or tethered spacecraft. The Stellar

Interferometer will provide the best forecasting of solar activity and study the impact .of

stellar magnetic activity on astrobiology and life in the universe [GSFC, SI, 20011. Spe-
cifically, the Stellar Interferometer will study the various effects of magnetic fields of

stars, what generates them, and the internal structure and dynamics of the stars in which

they exist. This new knowledge will help scientists better predict climate and solar flares

which can effect communications satellites. The Stellar Interferometer will be a W inter-

ferometer, possibly on separated spacecraft. The Laser Interferometer Space Antenna

(LISA) will attempt to observe and prove the existence of gravitational waves [JPL, LISA,

20011. The proof of these waves existence would unify many scientific theories and pro-

vide one of the fundamental building blocks of the current theoretical picture of the uni-

verse. LISA will also use a separated spacecraft interferometer to accomplish its mission

goals.

While separated spacecraft interferometers are one of the only tools powerful enough to

achieve some of NASA's future goals, they also involve several technology areas which

are not currently fully developed, including high precision formation flying and space-

borne interferometry. At the present time, separated spacecraft interferometers are both

very expensive and very risky. It has been noted that approximately 80-90% of the devel-

opment cost of a large system is predetermined by the time only 510% of the develop-

ment time has been completed [INCOSE, 19981. This is because early decisions on the

architecture of a system affect almost all aspects of the system further down in the design

process. Therefore, these high-level systems architecture decisions need to be examined

carefully and based on quantitative models.

Problem Statement 23

The research discussed here examines how to design a top-level separated spacecraft

interferometer system in order to maximize life cycle throughput. Although the research

described is specifically related to separated spacecraft interferometers, several of the

algorithms and tools to be developed are applicable to space systems in general.

1.2 Problem Statement

Neither formation flight nor space-borne interferometry, the two main technologies behind

separated spacecraft interferometry (SSI), is a fully developed nor proven technology.

This implies two consequences that affect SSI systems: extra cost and extra risk. The

extra cost comes from the need to develop these technologies to an operational level

before they can be used in a NASA mission. The extra risk inherent in SSI systems stems

from the fact that they involve new, complex systems and processes. This combination of

extra cost and extra risk leads to a need to develop these systems with the concept of max-

imizing the overall productivity, or throughput, of the system at the given cost. Maximiz-

ing the throughput of a system involves two separate processes. First, it is important to

maximize the reliability of the system so as to minimize the probability of a failure occur-

ring. Second, with an inherently risky system it is important to realize that even with the

maximum system reliability, the probability of a failure is higher than in a non-risky sys-

tem and needs to be planned for. Therefore, it is important to maximize the productivity

of the system in the event that failures do occur in order to ensure the reported perfor-

mance is the performance of the system over the entire lifetime and not simply an instanta-

neous performance.

Reliability is defined as the probability that a system will be in a functional state at the end

of its given lifetime. When billions of dollars and many years are invested in a project, it

is extremely important to ensure that the system has as high a reliability as possible. There

are two distinct ways to increase a system’s reliability. The first is to increase the reliabil-

ity of the individual components or sub-systems. A system’s total reliability is the product

of all component reliabilities if the components work in series and therefore all compo-

24 INTRODUCTION

nents are required for the system to remain functional. Research and extensive testing can

improve component and subsystems reliabilities. The second method of improving reli-

ability is to increase redundancy. With redundancy if one component fails, a second com-

ponent can still perform the operation required. This leads to a robust design since the

system can sustain failures and still function. With complex systems, such as interferome-

ters, a combination of increased component reliability and redundancy is required to cre-

ate the most reliable system possible. The weighting and distribution of this combination

is not clear, however. How much money should be spent improving component reliability

versus buying more components to implement redundancy? Which component’s reliabili-

ties should be improved and which components should be duplicated? These decisions

are not obvious. Models that calculate the reliability of a given architecture, along with

failure analyses and optimization programs can help to answer these questions.

While it is important to design a system such that the highest reliability possible is

achieved, it is also important when dealing with systems using new technologies to design

for situations in which failures have occurred. In other words, it is important to not only

design a system that will continue to function in the event of a failure, but will also func-

tion at as high a productivity rate as possible. To accomplish this, it is necessary to model

the system and look at the productivity in each possible state. A state is defined as the

functional system that remains in the event of failures. Modeling the productivity in each

state requires two aspects: a method to model the productivity of a system given the sys-

tem parameters, and a Markov, or state-transition, model of the initial system. To model

the productivity of a system, a basic understanding of the system is required. In this case,

the system being modeled is an interferometer. The model of the productivity of an inter-

ferometer can vary from very basic equations depending only on the number of collecting

apertures, to very complex equations involving many more system parameters. The

research described here uses a relatively low fidelity model, described in Section 2.2 and

Chapter 3. The Markov model analyzes transition rates from one state to another state and

can lead to the probability that the system is any given state at any given time. This model

assumes that the probability of being in the initial, or no-failure state, at the beginning of

Research Objective and Expected Results 25

the simulation is one, and that the system transitions from one state to another at rates

equal to the failure rates of each component. With the probability of being in each state

throughout time known, and with a model to estimate the productivity of the system in

each state, a total estimated productivity, in the event of failures, can be calculated. Once

this estimated productivity is known, architectures can be compared in terms of total esti-

mated productivity.

While both reliability and productivity are important aspects to any system, the architec-

ture with the highest reliability does not necessarily have the highest productivity and vice

versa. The public will not be happy if the government spends money to buy a system

which has a very high reliability, and will therefore last for decades, but will produce one

image every year. Conversely, the public would also not accept a system which produced

an image per minute but lasted only one day. For this reason, it is important to design a

system which has an acceptable level of both reliability and productivity. Additionally,

other parameters, such as total system cost, play a key role in determining the usefulness

of a system and success of a program. As an example, a program which develops a system

that has a very high reliability and productivity but costs double the allowable budget will

not get the funding to get beyond the first planning stages. Therefore, a method of finding

an architecture that gives the best combination of all relevant parameters needs to be

found. System models - including reliability, productivity, and cost models - and optimi-

zation programs can be used together to arrive at such an architecture.

1.3 Research Objective and Expected Results

The objective of this research is to develop models and comparison and optimization pro-

grams to help answer the high-level architecture design questions discussed above. This

effort is comprised of both interferometry systems research and optimization methods

research. Specifically, this research effort aims to:

26 INTRODUCTION

1. Develop Markov model analysis tools to evaluate the probability that a sys-
tem is in any given state at any time throughout a mission lifetime. Define
states of the system based on knowledge of operation and failure analysis.

Use model and
Markov analysis to estimate total productivity of individual systems.

2. Create productivity model of interferometry systems.

3. Create cost model and estimate cost of individual interferometry systems.

4. Use Markov model analysis to estimate reliability of individual systems.
This step also involves creating a model to estimate how much a compo-
nent’s reliability is improved for a given amount of money spent.

5. Use all information described above to compare multiple user-defined archi-
tectures in terms of total performance.

6. Use optimization tools to optimize architecture level design decisions to find
the optimal. method of dividing money between increasing reliability of
components and additional redundancy to achieve the best combination of
life cycle metrics possible.

7. Develop sensitivity analysis of these results to unknown inputs, such as fail-
ure rates and cost model parameters.

8. Create Matlab toolbox to run all analyses discussed above. The toolbox
should be able to both compare user-given architectures and optimize over
the entire design-space to allow for use in multiple stages of design.

The results of this effort will be applied directly to the conceptual design of separated

spacecraft interferometers. In addition, the tools created will be applicable to all space

systems which are complex and consist of multiple components.

The expected results of this research are rules of thumb and tools to be used to determine

high-level architecture design decisions for interferometer systems. These decisions

include which components require redundancy and which components should be devel-

oped more fully to achieve a higher individual reliability. Other decisions include how

many of each component, as well as type of spacecraft (combining, collecting, and dual

functioning), create the optimum combination of high reliability, high productivity, and

low cost for given program goals. In addition, the sensitivity of all of these analyses to

unknown parameters will be estimated.

Chapter 2

SEPARATED SPACECRAFT
INTERF'EROlMETRY

While the question of how to spend funds to improve reliability, productivity, and cost by

either adding redundancy or increasing the reliability of components is applicable to all

complex systems, the research presented he= fucuses on one type of system in particular:

separated spacecraft interferometers. Separated spacecraft interferometers are being con-

sidered for use in several future NASA missions, as discussed in Chapter 1. While the

models used throughout this research are low fidelity, a basic understanding of the system

being modeled is still required to understand the model itself. Therefore, this chapter will

provide the reader with a basic understanding of how interferometry works. It should be

noted that this chapter is by no means meant to fully explain interferometry systems, but

simply provide enough information to allow the reader to understand the models used

throughout this research. Following this introduction, this chapter will then familiarize

the reader with the model of these systems used later in this research.

2.1 Separated Spacecraft Interferometry Background'

Resolution is one of the key parameters that is used to describe the performance of a tele-

scope. A telescope with a small angular resolution can make out smaller objects than one

with a large angular resolution. This parameter improves with increased diameter of the

~~

1. This d o n is based on conversations between the author and both Oliver Lay, of JPL, and David Miller,
of MIT my, 2001;Miller. 20011.

27

28 SEPARATED SPACECRAFT INTERFEROMETRY

main aperture, or mirror. As mirrors get larger however, they get more impractical to

launch into space. An interferometer is a type of telescope that uses multiple smaller mir-

rors instead of one large one. With this method, if two one-meter diameter mirrors are

placed a kilometer apart, they will have the same angular resolution as a one-kilometer

diameter mirror. This method of improving resolution is very powerful for space-based

telescopes, since launch costs can be dramatically reduced.

A telescope creates images by collecting photons from the target that it is observing. In

celestial observations, the targets are usually stars. As the distance to a star increases, it

can eventually be considered a point of light with no angular diameter. A typical optical

telescope with a single main aperture collects photons in the manner shown in Figure 2.1.

Please note that throughout this discussion, apertures are assumed to be square, and not

circular as is most often the case. The concepts are easier to visualize this way and were

therefore used in this introductory discussion. If a circular aperture is assumed however,

the distance labeled as U d in Figure 2.1 would actually be approximately 1.22 times h/d

since there is more light coming from the exact center of the target than there is from the

sides. This concept can be seen in Figure 2.2.

0 .

T Photon rate

Distance along focal plane

Figure 2.1 Photon rates for a single aperture optical telescope

In Figure 2.1, the black line is the photon rate from a single point of light, represented as

the black dot. If a second point of light is next to the initial point of light, as in the green

Separated Spacecraft Interferometry Background 29

Figure23 Difference between a circular aperture and a square
aperture

dot, it will create a similar pattern, slightly shifted, as seen by the green line. In this case

the second, or green, point of light is fainter than the first, or black, point of light. This

can be seen from the relative amplitudes of the peaks. The actual data from the telescope

would not show these individual patterns, but the sum of the individual Patterns. The

angular resolution of a typical optical telescope is given by Equation 2.1.

(2.1)
h AngularResolution = - D

In Equation 2.1, h is the wavelength of the light being observed, and D is the diameter of

the main aperture. If the second point is too close to the first point, then the peaks will

overlap and the telescope will not be able to see a distinction between the points. The sec-

ond point, or star, needs to be separated from the first point, or star, by the width of the

peaks in order for the stars to be distinguishable. This gives the equation for angular reso-

lution.

Interferometers are similar to single aperture optical telescopes in many ways. The

images are again created by collecting photons from the targets. With interferometers, a

number of measurements are required to get a complete image of a target. The number of

measurements required depends on the complexity of the target. Only a few measure-

ments of each target, no matter what the complexity is, are required to get useful informa-

tion about the target, however. An example of the data an interferometer would measure

can be seen in Figure 2.3a. This pattern of photon rate versus projected angle in the sky is

called a fringe, and is used to determine information about the target. The distance

30 SEPARATED SPACECRAFT INTERFEROMETRY

between the two collecting apertures is known as the baseline and is represented as B. The

pattern in Figure 2.3a is similar to that from an optical telescope in Figure 2.1, in that the

peaks are of approximately equivalent widths, with the diameter simply replaced by the

baseline. The main difference is that the peaks in the pattern from the interferometer do

not decay, but rather are of constant amplitude. The effect of the baseline can be seen in

Figure 2.3b. As the baseline increases, the frequency of the fringe increases. The ampli-

tude of the peaks is again dependent on the magnitude of the target.

O C ,
B

4
B

b -- 0 0

Angle in Sky, 8 Angle in Sky, 8

a. b.
Figure 2.3 a) Photon rates for a single baseline interferometer. b) Photon rates for an interferometer

showing the effects of varying baselines

There are two ways to think about the axes of a fringe. If a fringe is considered the pattern

a target would make in the focal plane, the x-axis is the amount of offset in the delay line,

or the optical path difference (OPD), and the y-axis is the photon rate. A fringe can also

be thought of as a projected pattern on the sky. In this method the light from a target trav-

els the same distance to both apertures when it is directly in line with the middle point of

the two sets of optics, giving rise to a peak. As the star moves to one side or the other of

the middle point, the light begins to travel slightly different distances to each aperture,

causing varying constructive and destructive interference levels, and giving rise to a fringe

pattern. In this case, the x-axis of the fringe is the angle in the sky of the target compared

to the mid-point of the apertures and the y-axis remains the photon rate. Figure 2.3 shows

Separated Spacecraft Interferometry Background 31

this second method of portraying a fringe, while Figure 2.4 shows an example of this

angular offset. If the first method of portraying a fringe is used, the pattern remains the

same as in Figure 2.3, however the axes change and the width of the peaks is no longer A/

B, but rather the distance between the peaks is equal to A, as shown in Figure 2.5. The pat-

terns shown in Figure 2.3 and Figure 2.5 are representative of a single point in the sky

with zero angular width.

Figu~p 2.4 Definition of angle in the sky.

2.1.1 Visibility

Unless a star is infinitely far away, it is actually wider than a single point in the sky. This

width is effectively seen in interferometer measurements as individual points of light next

to each other that together are as wide as the actual star. This can be seen in Figure 2.6.

In Figure 2.6, each point is separated by an angular distance 8. Note that the different col-

ors in Figure 2.6 represent different points of light, all with the same wavelength. Light

32 SEPARATED SPACECRAFT INTERFEROMETRY

0 0
B

OPD

Figure 2.5 Photon rates for an interferometer, seen as the pattern a
target would make in the focal plane.

Figure 2.6 Collecting light from multiple points in an interferome-
ter

coming straight into both apertures is compared to light coming in at an angle 8, implying

the target is offset in the sky by this same angle. This offset causes the light to travel

Bsin8 further to one aperture than to the other. This extra distance can be approximated as

BO for small angles. The effect on the fringe pattern is similar to the effect of adding a

second point to the pattern in an optical telescope. This effect can be seen in Figure 2.7.

Separated Spacecraft Interferometry Background 33

A target represented by the four points shown in Figure 2.6 would be 48 wide. As the star

gets wider and wider, there are more and more points of light next to each other. As with

the optical telescope, these individual patterns for each point do not appear in the data, but

rather the sum of all photons is recorded. The sum of the individual patterns can be seen

in Figure 2.9 for a single point of light up to four points of light. Note that as more points

of light m summed, implying a larger star, the total photon rate becomes more constant,

with less relative difference between the valleys and the peaks. It is this difference that is

used to measure the angular size of the star in the sky.

25 ,
I

2

J! ' 5
a

f I
n

05

0

Figure 2.7 Photon rates from multiple points of light

Visibility is a parameter used to measure the relationship between peaks and valleys of a

fringe. Figure 2.8 and Equation 2.2 illustrate the method of calculating fringe visibility.

A O . ~ (X - Y) vis = - - -
B O S (x + y)

If a single point of light is measured, as in the black line in Figure 2.9, the valleys of the

pattern have zero amplitude. Therefore, the y variable in Equation 2.2 is zero, and the vis-

ibility is equal to one. However, if two or more points are Seen together, as in a star with

angular width, the valleys no longer have amplitudes of exactly zero. For example, in

Figure 2.7 and Figure 2.9 the point A has zero photon rate if just the black line is mea-

34 SEPARATED SPACECRAFT INTERFEROMETRY

d

OPD

Figure 2.8 Visibility calculation definitions

sured. If multiple lines are summed, as is the case with the green, blue, and red lines in

Figure 2.9, the sum is no longer zero. These summed lines in fact will never reach a value

of zero. Therefore the value of y in the equation for visibility will no longer be zero, and

the visibility will no longer be one.

0 2 4 A 6

Dehy Une

Figure 2.9 Photon rates from multiple points of

- 1+2+3

light

As more patterns are summed the relative sum of the peak and the valley, B, increases,

while the relative difference, A, decreases. This causes the visibility to decrease. In the

Separated Spacecraft Intderomtry Background 35

-t

extreme case, if the fringe were a constant value, x would equal y in Equation 2.2, and the

visibility would be zero. Therefore a single point of light will have a visibility of exactly

one, while a star of infinite width will have a visibility of zero. This relationship can be

seen in Figure 2.10.

1

aa

a4

a2

0

Figure 2.10 Visibility comparison for up to 4 points

As shown in Figure 2.7, the distance between the patterns of individual points of light

goes approximately as the baseline times the distance between the points. Therefore as the

baseline decreases, so does the distance between patterns in Figure 2.7. If this distance

becomes too small, then it becomes impossible to distinguish between the peaks. This is

similar to angular resolution of the optical telescope. If these patterns are too close the

visibility will not drop, since the pattern of the individual points summed up still reaches

near zero. This effect can be seen in Figure 2.11 a, b, and c. Compare Figure 2.11 to Fig-

ures 2.7, 2.9, and 2.10 to see the difference between a large B6 and a small Be.

Assuming an ideal instrument, visibility is always equal to one for a single point of light

and for a star of any width if the baseline is very small. As the baseline increases, visibil-

ity drops. The sharper the drop in visibility, the larger the angular width of the star. As the

baseline increases past the first minimum in visibility, visibility begins to increase again.

This effect could be seen by adding more points to the example shown in Figures 2.7, 2.9,

36 SEPARATED SPACECRAFT INTERFEROMETRY

1.5

i l
0.5

0

\ \ \ \

I

0 2 4 6
D W LIne

0 2 4 6

D W L b

a. b.

04 I
1 2 3 4

lhlunbsdpdnts

C.

Figure 2.11 4 points of light separated by 0.2 units (Figures 2.7, 2.9, and 2.10 are separated by 1.6
units). a) Photon rates. b) Total photon rates. c) Visibility comparison

and 2.10. A fifth point would add a second line basically on top of the black line in

Figure 2.5 and double the component from the first, or black, point in the sum. This

would cause a larger visibility than if each component is only counted once, as shown.

These later peaks in visibility are much smaller than the first peak however, and will even-

tually taper out to zero. This can be seen in Figure 2.12.

Figure 2.12 is simply an example of the trends of visibility in relation to angular width of

the target and baseline of the interferometer. Curves similar to those in Figure 2.12 exist

with the exact relationship between these three parameters. Therefore, the size, or angular

width, of a star, if it is assumed to be circular, can be measured by simply measuring the

Separated Spacecraft Interferometry Background 37

0 Target
c--)

I 01,

Baseline

Figure 2.12 Relationship between visibility, baseline, and target size

visibility of the target at one baseline, which is assumed to be known. The measurement

can then be fit to one of the pre-existing curves to determine the size of the target.

Visibility can be measured by measuring the photon rate, N, at any four points along a

wavelength in the fringe. This can be seen in Figure 2.13 and Equation 2.3.

Figure 2.13 shows points A, B, C, and D falling directly on or half way between the exact

peaks and valleys of the fringe. This does not need to be the case for Equation 2.3 to hold.

The point A can be anywhere along the fringe. The points B, C, and D simply need to be

measured relative to the point A, at exactly onequarter wavelength intervals. Therefore,

once the fringe is found for a given target, the visibility can be calculated from four mea-

surements along that fringe.

2.1.2 Resolution

As mentioned before, a star or target with angular width can be thought of as individual

points of light next to each other for a distance equal to the angular width of the target. If

enough of these points are next to each other, the entire area within the pattern shown in

Figure 2.7 will be covered. This can be seen in Figure 2.14. If the pattern is entirely filled

in, there is no way to make out even a small fringe in the total photon rate, which

38 SEPARATED SPACECRAFT INTERFEROMETRY

A B C D

Figure 2.13 Visibility calculation definitions.

approaches a constant value. This can be seen in Figure 2.14b. If the total photon rate is

constant, then the visibility is exactly zero, and the interferometer cannot resolve anything.

This is known as resolving a star out. This occurs if the baseline times the angular width

of the star (i.e. the distance between the first pattern’s peak and the last pattern’s peak - see

Figure 2.7) is much greater than the wavelength of the light being observed. Therefore it

is difficult for an interferometer at a given baseline, B, to resolve a star that has a larger

angular width than the wavelength of the light divided by the baseline. If the angular

width of a target is larger than this angle, the interferometer can only decipher that the tar-

get is larger than its capability to see, but cannot decipher any information on how much

larger the target is. The angular width at which a star is resolved out, €IRo, is given in

Equation 2.4. Note that in order to resolve individual targets of large angular width, the

baseline should be small.

h
‘RO ”

There remains the question of how close together two individual targets can be for an

interferometer to be able to distinguish between them. For example, how close can the

two stars, or point sources, in a binary system be before the interferometer sees them as a

single point source? A binary system would create a visibility pattern similar to that

Separated Spacecraft Interferometry Background 39

2

1.8

1.4

a 1.4
4 2 12

i; 0.8
a 0.6
c

04

0.2
0
0 2 4 6

Dew-

&

35, 1

b.

c
Figure 2.14 Example of a resolved out star - 30 points separated by 0.2 units. a) Photon rates. b) Total

Photon rates. c) Visibility comparison

shown in Figure 2.15. The first star would create the usual pattern shown in Figure 2.3a.

The second star would create the same pattern, shifted over by an amount equal to the

baseline times the angular separation between the two sources. When this shift is exactly

equal to one-half the wavelength of light, the two patterns will add together and cause

complete destructive interference. In other words, the total photon rate would be constant,

causing a visibility of zero. This accounts for the null at lambda over two times the angu-

lar separation in Figure 2.15. As the separation between the patterns continues, this pro-

cess continues. Eventually, when the baseline times the separation of the sources is equal

to exactly one wavelength, the two patterns have complete constructive interference, and

the visibility is once again one. To determine that there are two sources and not simply

40 SEPARATED SPACECRAFT INTERFFBoh4l?”RY

one larger source, the baseline must be able go past this null and see the second maximum

peak in Figure 2.15.

AI20
Baseline

Figure 2.15 Visibility for a binary system.

It is also possible to look at the angular resolution of an interferometer in a similar manner

to the discussion of the angular resolution of a single aperture optical telescope. If the pat-

terns in Figure 2.7 are too close together, as in Figure 2.11, then they cannot be distin-

guished from one another. One criterion for when peaks can be distinguished is that the

peak of the second pattern cannot be within the distance from the peak to the trough of the

first pattern. For a square aperture, in which all the light has the same distance to travel,

the first trough is at one half the wavelength. This is the easiest concept to visualize and

has therefore been used in all previous discussions. For a circular aperture, the first trough

is actually at approximately 1.22 times the wavelength, since there is more light coming

from the exact center of the target than from the sides. This can be seen in Figure 2.2.

All of these arguments put the smallest angular separation at which an interferometer at a

given baseline can still make out two individual targets, ORES, between the wavelength

over the baseline and the wavelength over two times the baseline. This can be seen in

Equation 5. The range in this equation is due to the fact that there is no strict value of

where the instrument can specifically separate two targets. The area in which it can and

cannot separate targets blends together smoothly, and where exactly the cut-off is can be

unclear or indistinguishable.

Separated Spacecraft Interferometry Background 41

It is worth noting that in order to resolve individual large targets (large €IRo) a small base-

line is needed (see Equation 2.4), but in order to resolve between two close small targets

(small ORES) a large baseline is needed (see Equation 2.5). With a large baseline, details of

an image can be resolved, but the background and large areas in the image would be

resolved out. With a small baseline, the large areas and backgrounds can be resolved, but

no detail would come through. This is one reason that any interferometer attempting to

image a target needs a variable baseline. This is one of the main arguments for using a

separated spacecraft interferometer, because it allows for a totally variable baseline.

2.13 Imaging

In addition to the size of a target, an interferometer can also be used to gather information

about the shape of a target. Figure 2.16 illustrates this process. If a target is actually an

ellipse, rather than a circle, then the size information given by an interferometer with col-

lecting mirrors horizontally across from one another would be different from the size

information given by the same interferometer with the same baseline, but with the collect-

ing mirrors vertically across from one another. This difference in measurements implies

that the target is elliptical in shape. Therefore, an interferometer can begin gathering data

on the shape of a target with just two measurements. These two measurements are repre-

sented by the red dots in Figure 2.17. The plane in Figure 2.17 is known as the W-plane

and each measurement taken at a given baseline at a given orientation produces two UV

points. If the entire UV-plane is filled in within a circle with a radius of the largest base-

line used, a fully sampled image can be created. The transformation from the W-plane to

the image plane is accomplished through a Fourier transform. With two points, the size

can be determined. With four points, similar to the four red points in Figure 2.17, the

basic shape can begin to be determined. With the entire plane filled in uniformly, as in the

black dots in Figure 2.17, the entire shape of the target can be determined, and an image

can be taken. The change in angle around the circle is used to gather shape information,

and the change in radius through the circle is used to gather both detailed and large m a

information, as was discussed above [Lay, 20011.

42 SEPARATED SPACECRAFT INTERFEROMETRY

1 . A F=> e , = x
2 . 1 B E-> e , = y Targe t

Figure 2.16 Resolving a target’s shape

2 :

Of..
1...*.. 1 0 ..*...*+..*..**

0 .io.

Figure 2.17 Sample UV-plane

2.1.4 Broadband Light

The previous discussion has involved a simplification to assist in the visualization of con-

cepts. The light discussed above is assumed to be monochromatic, or single wavelength.

While this simplification makes interference and other concepts much simpler to visual-

ize, it is almost never physically realizable or useful. In reality, most light being studied

by an interferometer has components of different wavelengths. When this occurs, it is

impossible to get a visibility of exactly one. This is due to the fact that even if one compo-

nent were shifted by exactly one wavelength, that shift would not be exactly one wave-

length for a different component. In other words, the instance in which the optical path

difference is exactly zero is the only instance in which all the light from both sides lines up

exactly. At any other optical path difference other than zero, the light from at least one

wavelength component will not be lined up exactly from the two apertures. This implies

that the pattern the interferometer will receive for broadband light will have a maximum

Separated Spacecraft Interferometry Background 43

when the light is completely constructively interfered. The general pattern will remain the

same as with monochromatic light as the OPD is increased and decreased in the sense that

it will still vary between peaks and valleys. However, the peaks will continuously

decrease in magnitude while the valleys will never be zero and will continuously increase

in value. This pattern can be seen in Figure 2.18. The visibility, as defined in the previous

discussion, of broadband light is measured at the center of the fringe using the first (zero-

point) peak and valley amplitudes.

Figure 2.18 Photon rates for broadband light. The red and blue lines
are individual wavelength components and the black line
is the sum.

Figure 2.18 implies that the theoretical limit on visibility for broadband light is not one,

but a value lower than one since the first valley will never be zero. The specific theoreti-

cal limit is different for different combinations of wavelengths. For example, white light

is comprised of a component of every wavelength. The photon pattern an interferometer

would record for a point of pure white light would then be an impulse at zero OPD, with

an amplitude dependant on the magnitude of the light being observed. At any point other

than zero OPD the photon rate would average to a constant, at an amplitude of one half the

amplitude of the impulse. This pattern can be seen in Figure2.19, and is simply an

extreme case of the pattern shown in Figure 2.18. If these numbers are plugged into Qua-

tion 2.2, the theoretical limit on visibility for white light is shown to be one-third. This

calculation is shown in Equation 6.

44 SEPARATED SPACECRAFT INTERFEROMETRY

Imax T Photon Rate

1/2 Imax
t b

OPD

Figure 2.19 Photon rate for white light.

Even when observing monochromatic light, a physical interferometer would never read

the theoretical maximum visibility of one. This is due in part to vibrations. As vibrations

move through the interferometer, the point on the delay line at which the light from both

apertures travels exactly the same distance, and therefore the fringe would in effect vibrate

as well. This will cause even a single point source to appear similar to the pattern shown

in Figure 2.11, which in turn will cause the point source to have a very high visibility

reading, but it will not be exactly one. As more vibrations are damped out of the instru-

ment, the maximum visibility for monochromatic light through that instrument will

asymptotically approach one, but the limit itself is purely theoretical [Miller, 20011.

2.2 Separated Spacecraft Interferometry Model

The major complication when operating an interferometer is that the light that comes from

one end of the instrument needs to travel exactly the same distance to the combining

optics as the light coming from the other end of the instrument in order to get a fringe.

Therefore, if all the spacecraft that are capable of collecting light in a system are placed

symmetrically about some center point, and a spacecraft capable of combining light is

placed at this center point, the system should be able to collect fringes. Each fringe is

equivalent to one visibility reading, and therefore accounts for two UV points. Each set of

spacecraft capable of taking a measurement for two U V points forms what is known as a

baseline. In this sense, an equal number of baselines and sets of UV points are needed to

Separated Spacecraft Interferometry Model 45

complete an image. The more spacecraft collecting light in each configuration, the fewer

times a change in the configuration of the system is needed to get more baselines, and

therefore fill in the W-plane. While only one set is needed at a time, an interferometer

system can not function without at least one set of combining optics. For this reason, any

model of a separated spacecraft interferometry system needs to capture the number of col-

lecting and combining apertures available.

Throughout this work, each separated spacecraft interferometer system was modeled as a

combination of three different individual types of spacecraft. The three types of space-

craft available are combining spacecraft, collecting spacecraft, and dual functioning

spacecraft. As the names suggest, each collecting and dual functioning spacecraft is capa-

ble of collecting light while each combining and dual functioning spacecraft is capable of

combining light. A dual functioning spacecraft can therefore both collect and combine

light. However, to simplify the model it is assumed that both tasks can not be completed

at the same time. To form the minimum of one baseline, each system is required to have at

least two functioning spacecraft capable of collecting light and one additional functioning

spacecraft capable of combining light to be considered in a working state. The require-

ment that a dual functioning spacecraft cannot both collect and combine light at the same

time implies that each system must have a total of at least three functioning spacecraft

(two collecting light plus one combining light) to be operable.

Each individual spacecraft is modeled in two parts: optics and bus. The combining space-

craft is modeled as combining optics plus a bus, the collecting spacecraft is modeled as

collecting optics plus a bus, and the dual functioning spacecraft is modeled as combining

optics, collecting optics, and a bus. Any of these components may fail throughout time.

Failure rates are given by the user as an input for each set of optics (combining and col-

lecting) and each type of bus (combining, collecting, and dual functioning). The combin-

ing and collecting spacecraft are considered in a failed state if either the optics or bus fails.

The dual functioning spacecraft is switched to a combining spacecraft if it’s collecting

46 SEPARATED SPACECRAFT INTERFEROMETRY

optics fail, and is switched to a collecting spacecraft if it’s combining optics fail. The dual

functioning spacecraft can also transfer directly to a failed state if the bus fails.

With this simple model of a separated spacecraft interferometry system, the productivity,

cost, and reliability of each architecture can be estimated. The models used to make these

estimates are discussed in further detail in Chapter 3.

2.3 Chapter Summary

This chapter has introduced the reader to the basic physical concepts behind interferome-

try systems. These concepts then led to the development of a simple model of an interfer-

ometer system which will be used throughout this research. The concepts and model

developed in this chapter are needed to estimate the life cycle metrics - reliability, produc-

tivity, and cost - of each architecture being evaluated. The models used to create these

estimates will be discussed in Chapter 3.

Chapter 3

MODEL DEVELOPlMENT

A series of Matlab functions have been developed to automatically estimate the productiv-

ity, cost, and reliability of a separated spacecraft interferometer system. The productivity

of a system is in this case defined as the expected total number of images produced by the

end of the mission lifetime. The cost is defined as the total life cycle cost of the system,

including manufacturing of spacecraft and operations. The reliability is defined as the

probability that the system is in a working state at the end of the mission lifetime. Each of

the models used to estimate these three metrics depend on the state-transition matrix.

Therefore, a method of automatically generating this matrix for any architecture is needed

in order to automatically estimate any of these three metrics for the given architecture.

This chapter will first discuss the method used to automatically generate this state-transi-

tion matrix. Next, the model used to estimate each of these life cycle metrics - productiv-

ity, cost, and reliability - will be discussed in detail. Finally, the results of using all three

of these models will be shown for an example case study.

3.1 State-transition Matrix

The state-transition matrix, also called the A matrix, defines both the states of a system

and therate at which the system will transition from one state to the next. A state of the

system is defined by the number of operational spacecraft of each type (dual functioning,

combining, and collecting). Therefore, the state of the system changes as failures occur in

47

48 MODEL DEVELOPMENT

spacecraft. The A matrix is found by analyzing the Markov model of a system. If P is

defined as the vector of probabilities of being in each state of the system at any time, the A

matrix is defined as:

,

(3.1)

The state-transition matrix is essential in calculating the probability of being in each state

of the system, and therefore is also needed to calculate several important parameters of the

entire system, such as productivity, cost and reliability.

3.1.1 Automatic Generation of State-transition Matrix

Prior to this work, if any given architecture was to be analyzed using the state-transition

matrix, this matrix needed to be calculated by hand and then entered into a Matlab file.

When the state-transition matrix was later needed in analysis routines, the hand-entered

and hand-calculated matrix was simply looked up from this Matlab file. In addition, the

number of spacecraft acting as collectors for any given state needed to be entered by hand.

Hand calculation of A matrices can introduce human errors, such as forgetting an entry or

a negative sign. It is also possible to introduce errors when the state-transition matrices

are manually copied into the Matlab file. In addition to errors, calculating the A matrix by

hand takes a lot of time, especially for complicated systems (i.e. creating an A matrix for a

system with 30 spacecraft that could work down to 3 spacecraft would be practically

impossible due to the size of the matrix). Using this manual process, if it was desired to

analyze any given architecture, that particular architecture’s state-transition matrix would

need to have been previously calculated. If the A matrix was not previously entered, it

would need to be entered before the productivity, reliability, or cost could be calculated.

As stated earlier, calculating and entering the state-transition matrix requires a lot of time.

If the A matrix could be calculated and entered automatically, it would be possible to

reduce potential for errors, save time, and have the ability to analyze any architecture.

This leads to the ability to provide a much more thorough search of the design space, using

State-transition Matrix 49

tools such as genetic algorithms or simulated annealing, instead of only searching through

the designs that engineers have previously considered.

After calculating a large number of A matrices by hand, a pattern was noticed in the gen-

eral A matrix. An A matrix can be created by looking at each state individually. Each row

and column of fhe matrix corresponds to a different state. Figure 3.1 shows a very simple

example of a state diagram, or Markov model, and the corresponding A matrix. Here d, m,

and I are the failure rates of a dual functioning, combining, and collecting spacecraft

respectively. The diagonal entries correspond to the ways in which the system could

leave that state. In the example shown in Figure 3.1, three independent components could

fail in state two. As a result, the diagonal entry for the second row would be minus one

times the sum of the failure rates of each of the three components.

A(2,2) = -(2d+ m + 1) (3.2)

If a component fails in a given state and the system is still operating but in a different state,

then the column entry of the new state’s row would contain the rate at which this process

occurs. Consider the example shown in Figure 3.1, where when a component fails the

system transitions from the second to the third, fourth, or fifth state. In the A matrix repre-

sentation, the third, fourth, or fifth row and second column entry would be the failure rate

of the failed component. For example, when a collecting spacecraft fails, the system tran-

sitions from the second to the fifth state. Therefore, the fifth row and second column entry

of the A matrix is the failure rate of the collecting spacecraft, or 1.

A(5,2) = I (3.3)

A(4,2) = m (3.4)

Since there are two identical components in the system, and if either one of them fails the

system is considered in the third state, the corresponding third row and second column

entry of the A matrix would be two times the failure rate of the component.

A(3,2) = 2d (3.5)

50 MODEL DEVELOPMENT

Any entry of the matrix that is not on the diagonal and does not connect one state to

another in this regard is simply zero.

A=
- F h l 0 0 0 0 0 0 0

5"d -Td-ml 0 0 0 0 0 0
0 T d d - m - I O 0 0 0 0
0 rn 0 -2d-l 0 3*d 0 0
0 I 0 0 -2"d-m 0 0 F d
m 0 0 0 0 3 d 4 0 0
0 0 0 0 0 I - F d m
I 0 0 0 0 0 0 3 d - m

Figure 3.1 Markov Model and corresponding A matrix for a sample
system of three dual functioning spacecraft, one combin-
ing spacecraft, and one collecting spacecraft

Once the pattern has been identified, the main challenges in automating the process of cre-

ating the A matrix are defining the states, checking if a new state has been previously

defined or not, knowing when a failure causes the system to move to a new state, and iden-

tifying when the entire system has failed. Additionally, a tree-type of structure needs to be

implemented to be certain that every state has been analyzed.

State-transition Matrix 51

The main variables in the automatic A matrix generation recursive Matlab function,

state.m”, are a, h l , dual, com, col, last-state, f-d, f-m, and f-1. The variable a is the

state-transition matrix itself and is both an input and an output to the function. The vari-

able dml is a matrix containing the state information, and is also both an input and an out-

put of the function. As in the A matrix itself, each row of the dml matrix corresponds to a

particular state. In the dml matrix, the columns correspond to the number of dual func-

tioning spacecraft, combining spacecraft, and collecting spacecraft in that state respec-

tively. Therefore by checking if the one-by-three vector consisting of the number of dual

functioning spacecraft (4, the number of combining spacecraft (m), and the number of

collecting spacecraft (Z) in a particular state is already a row of the dml matrix, it is possi-

ble to see if that given state has previously been defined. If this vector is not already a

row of the dml matrix, the state should be added as a new state. The variable last-state is

an input to the function, and is the number of the previous state, from which the current

state was derived. This allows the entries for all states to be entered in both the correct

rows and columns. The variables dual, corn, and col are the number of dual functioning

spacecraft, combining spacecraft, and collecting spacecraft respectively in the current

state, and the variables f-d, f-m, and f-2 are their respective failure rates.

“

The function “state.m” is recursive, meaning that it calls itself within the function. The

recursive process produces the tree structure mentioned above. The function has built in

rules that decide whether a given number of each type of spacecraft is acceptable and

could be a new state, or if the system has failed. Consider a system that requires two col-

lecting spacecraft and one combining spacecraft to be functional. The operational rules

for such a system are:

I .

2.

The number of spacecraft acting as collecting spacecraft must be greater
than or equal to two. This includes both the collecting spacecraft and the
dual functioning spacecrajl.

The number of spacecraft acting as combining spacecrajl must be greater
than or equal to one. This includes both the combining spacecraft and the
dual functioning spacecraft.

52 MODEL DEVELOPMENT

3. Since the dual functioning spacecrafr cannot collect and combine light at the
same time, and since both two collecting spacecrafr and one combining
spacecrap must be working for the system to be operational, the total num-
ber of spacecraft must be greater than or equal to three.

If from any given state the system can lose a dual functioning spacecraft and still meet all

the criteria for an operable system, and this is the first time the state has been defined, then

“state.m” is called with the same number of combining and collecting spacecraft and one

less dual functioning spacecraft, and with last-state set at the number of the current state,

state-num. The additional requirement of only calling “statem” if this is the first time a

state has been defined allows the algorithm to follow each branch of the tree to system

failure only once. If this rule is not included, the system will repeat analyses through the

same branches many times. While it is important to make sure that every possible way of

reaching a given state is explored and analyzed, once a particular state has been reached,

the path from that state to system failure will always be the same, no matter how the state

was originally reached. Therefore, this rule was included to avoid excess analysis. Tests

were done on many sample systems, both with this final rule and without. While the state-

transition matrix for both cases were identical, the time required to generate the state-tran-

sition matrix was dramatically reduced in the cases in which the rule of only calling

“state.m” if the current state was not previously defined was used. This can be seen in

Table 3.1. This process is shown below, implemented in the “state.m” source code. Note

that in the “state.m” source code d, m, and 1 are the number of dual functioning, combin-

ing, and collecting spacecraft respectively.

d-new = d-1;

if d+l > 2 & d+m > 1 & d+m+l> 3 & d >= 1 & state-num >. . .
number-of-states

[a,dmll=. . .
state(a,d_new,m,l,state-num,~l,f-mo,f-lo,f-d,f-m,f-l);
end

State-transition Matrix 53

0
68
298
379
370
502
14
61
141

1 256
41 1
31
39
99
107
154
35 1
446
611

TABLE 3.1 Comparison of A matrix and time needed to analyze A matrix when only calling “statem”
if current state was not previously defined (with extra rule) and always calling “sture.m“ if operational
rules hold (no extra rule).

1.08 1
5.898
20.529
25.687
25.066
34.449
2.684
5.468
10.795

27.029
3.725
4.086
7.901
8.382
1 1.427
23.484

1 30.624
41.56

, 17.646

1
2
3
3
3
4
2
3
4
5
6
2
2
3
3
3
5
5
7

1
2
3
3
4
3
1
1
1
1
1
2
1
2
1
1
2
3
1

1
2
3
4
3
3
1
1
1
1
1
1
2
1
2
3
1
1
1

X
.LI

1
27
89
110
108
139
10
25
47
77
116
16
18
36
38
51
101
125
165

1
95
387
489
478
641
24
86
188
333
527
47
57
135
145
205
452
57 1
776

0
285

40221
122242
102564
627776

15
219
3007

41388
576285

57
85

812
1058
3630

165693
53287 1
8134937

1
7

156
537
445
3443

3
6
17
145

2652
4
4
9
10
19

673
2618

55639

This procedure is repeated for cases involving the loss of a combining or collecting space-

craft. The rules of operation can easily be changed to account for modified, or completely

different, systems. As an example, during development the dual functioning spacecraft

model was changed such that instead of simply a dual functioning spacecraft failing,

instead either the combining optics, collecting optics, or bus would fail. In this new

model, if the combining optics failed, the dual functioning spacecraft becomes a collector,

if the collecting optics fail the dual functioning spacecraft becomes a combiner, and if the

bus fails the spacecraft is lost. Prior to the automatic state-transition matrix tool, this

change in the system model would have required entirely new A matrices to be developed

54 MODEL DEVELOPMENT

and entered by hand for every system under consideration. However, with this automatic

tool, no new state-transition matrices were required to be analyzed by designers, since the

tool automatically generates this matrix for any system when the tool is run.

Since the u and dml matrices are both inputs and outputs in each call to “stute.m”, they are

continuously updated. If losing any one of the components causes the system to fail the

tests for operational ability, the current state must lead directly to system failure if that

component fails, and “stute.m” is not called again.

A few initial conditions must be entered before using “stute.m” to automatically generate

the A matrix. First, given an architecture, the first state’s entry must initialize the A matrix

by entering in the first row and column entry. The variable lust-state must be initialized to

the first state, or one. The dml matrix is initialized by setting the first row equal to all

zeros. This enables “stute.m” to identify if this is the first call to the function, or if it is

one of the recursive calls. This ensures that the first state can also be used to call

“stute.m”, and therefore that all states have been analyzed. However the call to “state.m”

for the first state only needs to check if components can fail and recall “stute.m”, but does

not need to fill in the A matrix, since it has already been initialized with the first state.

Therefore it is important to be able to identify the first call to “stute.m”.

Once the initial conditions are entered, one call to “stute.m” will automatically produce

the full A matrix and the full dml matrix. The dml matrix can then be used to calculate the

number of spacecraft in each state acting as collecting spacecraft, and generate the number

of baselines for each state. With “stute.m” no A matrices will need to be generated or

entered by hand, and any architecture can be analyzed immediately. Please see

Appendix A for the source code for “stute.m ”.

3.1.2 Verification

Several automatically generated A matrices were checked against manually generated

matrices, and shown to be identical. The productivity results, in terms of the expected

Productivity Model 55

total number of images a system will produce by the end of the mission lifetime, from the

automatic state-transition matrix generation were then compared to productivity results

using the previously entered manual state-transition matrices, to check for errors in the

program. Please see Section 3.2 for a discussion of the productivity model used for this

test. All acceptable combinations of the three types of spacecraft, with a total of six space-

craft, were analyzed. The original comparison can be seen in the blue and maroon colored

bars in Figure 3.2. The comparison produced identical results in most cases. A few spe-

cific cases, however, produced different productivity results for the different methods. A

closer look at the A matrices of the four cases that differed resulted in the discovery of

errors in the manually entered A matrices of all four cases. These errors included forget-

ting a negative sign, missing entries, and entries in the wrong places. The errors produced

significantly different results from the corrected state-transition matrix. Once these state-

transition matrices were corrected, the two methods were compared again, and proved to

be identical, as can be seen in the blue and yellow bars in Figure 3.2. The results show

that the automatic A matrix generating code provided the correct A matrix for all 17 cases

checked, and also provided more accurate and reliable results than the manually generated

cases.

3.2 Productivity Model

To find the expected total number of images a SSI system will produce, it is necessary to

first find the productivity rate, or number of images per unit time, that each state of the

system is capable of. This productivity rate can then be integrated through time, taking

into account the probability of being in each state, to find the expected total number of

images. The productivity rate for a given state is a function of the number of operational

collecting spacecraft in that state, and therefore the number of independent baselines in the

system. There is one independent baseline per every pair of collecting spacecraft that has

a combining spacecraft located equal distance from each collecting spacecraft in the pair.

The number of independent baselines, Nb, in a given state is calculated using Equation

3.7, where n is the number of spacecraft capable of collecting light in the given state. The

56 MODEL DEVELOPMENT

2200 - Automatically Generated
Original Manually Entered

0 Corrected Manually Entered I

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Architecture

Architecture Key

1: 6 dual, 0 corn, 0 col
2: 0 dual, 2 corn, 4 col
3: 0 dual, 1 corn, 5 col
4: 1 dual, 1 corn, 4 col
5: 1 dual, 0 corn, 5 col
6: 1 dual, 2 corn, 3 col
7: 2 dual, 0 corn, 4 col
8: 2 dual, 1 corn, 3 col
9: 2 dual, 2 corn, 2 col
1 0 3 dual, 0 corn, 3 col
11: 3 dual, 1 corn, 2 col
12: 3 dual, 2 corn, 1 col
13: 4 dual, 0 corn, 2 col
14: 4 dual, 1 corn, 1 col
15: 4 dual, 2 corn, 0 col
16: 5 dual, 0 corn, 1 col
17: 5 dual, 1 corn, 0 col

Figure 3.2 Comparison of productivity calculated using the automatically generated A matrix, the orig-
inal hand-entered A matrix, and the corrected hand-entered A matrix

number of spacecraft capable of collecting light in a given state is defined as the number

of collecting spacecraft plus the number of dual functioning spacecraft, minus one if there

are no combining spacecraft, as seen in Equation 3.6. The subtraction of one if there are

no combining spacecraft accounts for the fact that one dual functioning spacecraft then

needs to combine light, and can therefore by definition not collect light. Please see

Section 2.2 for a discussion of the dual functioning spacecraft model used here. Each

baseline can provide one pair of UV points, or a fringe pattern. See Section 2.1 for a dis-

cussion on UV points and fringe patterns. Assuming the number of pairs of W points

needed to collect an image is known (and constant per image), the number of configura-

tions needed in each state to collect one image is the number of pairs of W points needed

divided by the number of baselines per configuration, as shown in Equation 3.8. The time

needed to take an image in each state can then be calculated as the number of pairs of UV

points needed multiplied by the time to take one pair plus the number of configurations

needed multiplied by the time needed to switch configurations plus some overhead time,

as seen in Equation 3.9. The imaging, or productivity, rate of the given state is then the

inverse of this time to take one image, as shown in Equation 3.10.

productivity Model 57

(corni> 1)

corni< 1

duali + coli

(duali - 1) + coli
- ni -

ni(ni- 1)
2 Nb, =

(3.6)

(3.7)

Nc(il = ceiZ(N/(Nbi)) (3.8)

Ti = Nc, + Nc(ilco + 0,

1
Ci =

(3.9)

(3.10)

In EQuations 3.6 through 3.10, duaIi is the number of dual functioning spacecraft, coli is

the number of collecting spacecraft, and corni is the number of combining spacecraft for

the i* state, ni is the total number of collecting spacecraft in the i* state, Ndi, is the num-

ber of configurations needed in that state, N is the number of pairs of U V points needed,

Mi is the number of baselines in the i* state, co is the time to both take one independent

difference (pair of UV points) and to move a configuration, 0, is the overhead time, is

the time to take an image in the i* state, and'Ci is the imaging rate of the ith state. N, co,

and 0, are all constant parameters in this problem and are not changing from one state to

the next.

Two different methods have been developed to calculate the expected total number of

images a system will produce in a lifetime, in the event of failures, once the imaging rate

for each state of the system has been found. The first method discussed uses a discrete

version of the state-transition matrix and a defined time-step to sum up the expected num-

ber of images throughout the mission duration. The second method uses Laplace trans-

forms to integrate through the mission lifetime and find the total expected number of

images directly from the state-transition matrix.

58 MODEL DEVELOPMENT

3.2.1 Discrete A matrix

In the first method of calculating the expected total number of images a system will pro-

duce in a lifetime, the probability of being in any given state at a given time is calculated

using a numerical integration solution to Markov models [Babcock, 19861. The method

involves transforming the A matrix from a continuous time matrix to a discrete time

matrix, M, as shown in Equation 3.11, where At is the duration of the time-step and I is the

identity matrix.

M = I+AAt (3.11)

The vector of the probabilities of being in each state at a given time, P(t), can then be cal-

culated as this M matrix multiplied by the probability of being in that state from one time

step before, as shown in Equation 3.12.

P (t) = M P (t - 1) (3.12)

Looking at each time-step individually, the imaging rate for that time-step can be calcu-

lated by summing the imaging rate for each state multiplied by the probability of being in

that state for the given time period, as shown in Equation 3.13. The number of images

taken in that time step is then simply the imaging rate for that time step times the duration

of the time step. The number of images can then be summed over all the time steps to get

the expected total number of images for the mission, as shown in Equation 3.14.

Ct = C C , P i (t)
i

NoI = Cc,At
t

(3.13)

(3.14)

In Equations 3.13 and 3.14, cr is the imaging rate of the entire system at time t, At is the

time step, Ci is the imaging rate of state i, P i t) is the probability that the system is in state

productivity Model 59

Time Domain
e”f(t>
f‘ (0

1

i at time t, and NoZ is the expected number of images produced by the system over the

entire lifetime.

Laplace
Domain
F(s-a)

sF(s)-f(o)
l/s

3.2.2 Laplace Methods

The second method to find the total number of expected images a system will produce

throughout its lifetime, taking into account failures, is to use Laplace methods to integrate

the imaging rate directly. Three general Laplace transform rules are used in the following

derivation and are shown in Table 3.2 [Strang, 19861,

The derivation for the total number of expected images a system will produce begins with

the definition of the state-transition matrix, Equation 3.1. This definition is transformed to

the Laplace domain, manipulated, and transformed back to the time domain to obtain a

single equation for the probability vector at a given time, f , in terms of the state-transition,

or A matrix, and the initial probability vector. The probability vector is a column vector

with n rows, when n is defined as the number of possible operational states that exist for

the given system. Each row in this vector corresponds to the probability that the system is

in that particular state. The initial probability vector is a vector of zeros, with a one in the

first entry. This is due to the fact that the system is assumed to be working and in its initial

state at time t=O, with a probability of 1. The productivity for any given time, f , can be

found by multiplying the imaging rate, Ci, found in Equation 3.10, for each state by the

probability that the system is in that given state. If the imaging rates are arranged in a pro-

ductivity vector, C, defined as a row vector of the imaging rate in each state, then the pro-

ductivity for any given time is given by the productivity vector times the probability

60 MODEL DEVELOPMENT

vector, and is a scalar. This productivity can then be integrated through the lifetime of the

system to find a total expected productivity [Belanger, 1995; Selby, 19711. This deriva-

tion is shown in Equations 3.15 through 3.22.

-P(t) d = AP(t)
dt

(sZ-A)P(s) = P,

P (s) = (sZ-A)-'P0

At P (t) = e Po

z (t) =

life

ztot = z(t)dt =
0

-
-"Ztot -

In Equations 3.15 through 3.22, life

At C P (t) = Ce P ,

life
1 At life I CeAtP,dt = C-e A P , IO

0

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22) -1 A -life
CA (e - OP,

is the mission lifetime, P is the probability vector, P,
is the initial probability vector, C is the productivity vector, A is the state-transition matrix,

z(t) is the productivity at time t, and ztOt is the total expected number of images.

3.2.3 Comparison of Methods

The two methods described above for calculating the total number of expected images a

system will produce in the event of failures were tested on various architectures and com-

pared against one another to check for accuracy in both methods. Seven different archi-

tectures were tested with both methods and the results were compared. The largest

Productivity Model 61

Combiners
2
1
1
1
2
1
3

difference between the two methods was only 0.056% of the results found from the

Laplace methods. The average difference between the two methods was only 0.6 images,

or 0.048%. These results are shown in Table 3.3 below. The similarity between the two

methods’ results leads to a high confidence in the accuracy of both methods.

Collectors
2
1
2
1
1
1
3

TABLE 3.3 Comparison of discrete A matrix and Laplace methods to find the productivity of a system

~ ~

Average

Dual
Functioning

2
1
1
2
1
3
3

NoI:
Discrete
A matrix

1621.4
564.3
1143

1141.3
707.9
1553.9
1980.1

~

1244.6

NoI:
Laplace
1620.5
564.1
1142.4
1140.8
707.6
1553.1
1979

1243.9

No1
0.9
0.2
0.6
0.5
0.3
0.8
1.1

0.056
0.035
0.053
0.044
0.042
0.052
0.056

Once both methods were checked against one another, it was decided to use the Laplace

method in future analyses. This decision was based on the number of equations and “if-

loops” required in the coding of both methods. Due to the large number of “if-loops” in

the discrete A matrix method, this method takes more time and computational effort to

compute than the Laplace method, and was therefore not used in further, more computa-

tionally intensive analyses.

3.2.4 Benchmarking

While no data is available to truly benchmark this simulation code, the results returned by

the code do logically make sense, as shown by the following parameter study. The design

vector for this problem includes the number of each type of spacecraft (combining, col-

lecting, and dual functioning) and the money spent to improve the reliability of each com-

ponent (combining optics, collecting optics, and bus). Please see Section 3.4.2 for a

discussion of how the money spent to improve the reliability of components affects the

62 MODEL DEVELOPMENT

failure rates of the spacecraft, and therefore the state-transition matrix. An initial architec-

ture of two of each type of spacecraft with no money spent on improving any component’s

reliability was used to calculate the initial total number of expected images. From here,

different aspects of the architecture were changed, and the calculated expected total num-

ber of images for these new architectures were compared to the initial expected total num-

ber of images. The results can be seen in Table 3.4 below.

TABLE 3.4 Parameter study of results returned from productivity model

Number
of dual
func.
spc.

2
3
2
2
2
2
2

Number
of comb.

sPc*
2
2
3
2
2
2
2

Number
of collec.

spc.
2
2
2
3
2
2
2

Money to
improve

combining
optics rel.

($M)
0
0
0
0

100
0
0

Money to
improve
collecting
optics rel.

0
0
0
0
0

100
0

($M)

Money to
improve

bus
reliability

($M)
0
0
0
0

Expected
number

of images
1621
1841
1644
1835
1647
1794
1821

While an increase in the number of any spacecraft type does provide an increase in the

expected number of images, the dual functioning spacecraft have the largest effect. This

makes sense since these spacecraft can be used as either combiners to keep the system

functioning or collectors to improve the productivity of the system. The combining space-

craft had the least effect on the number of images. This also makes sense since only one

combining spacecraft is used at a time, and in order for three combiners to make an impact

on the system, two combiners would have already had to fail. Following this same logic,

when an extra dual functioning spacecraft is added to the architecture it will act as a col-

lecting spacecraft the vast majority of the time, and will only act as a combining spacecraft

when the two original combining spacecraft have already failed. This explains the simi-

larity in the expected total number of images for when a dual functioning spacecraft is

added and when a collecting spacecraft is added. In addition, improving any of the com-

Productivity Model 63

ponent reliabilities also increases the expected total number of images. In this case,

improving the bus reliability has the largest impact. This is logical since the bus affects all

three types of spacecraft, whereas both of the sets of optics only impact two types of

spacecraft each. For the same reasoning as above, improving the collecting optics reliabil-

ity has a much greater impact on the number of images than improving the combining

optics reliability.

3.23 Casestudies

Two case studies were carried out to demonstrate the ability of the model generation func-

tions to adapt to varied systems. Both case studies assumed no money was spent to

improve the reliability of components. A case study of the productivity of different com-

binations of types of spacecraft, with fifteen total spacecraft, was carried out using the

automatic model generating code. This case considered four collecting spacecraft and one

combining spacecraft to be the minimum required for system operations. With hand-

entered A matrices, this case study could have taken days, or even weeks to complete,

since an A matrix would have to be hand calculated for each combination of spacecraft.

With such a large system, this A matrix is quite complex and large. Creating a Markov

model of this system, and then creating an A matrix by hand from this model could take an

enormous amount of time. In addition, even if one of the A matrices had been previously

entered for the usual case of the system requiring only two collecting spacecraft to be

functional, the A matrix would still have to be recalculated since the rules of system oper-

ations had changed. These rules of system functionality are easily changed when using

the automatic model generation by making the operational rules in the “stute.m” source

code reflect this change. Changing the rules to reflect system failure with fewer than four

collecting spacecraft took only a few minutes, and this case study was run with less than

half an hour of preparation time. The results of this case study can be seen in Figure 3.3.

In the next case study, the system can function with as few as two collecting spacecraft

and one combining spacecraft. In this case study, however, the system requires one com-

64 MODEL DEVELOPMENT

Architecture

1: 15 dual, 0 com, 0 col

2: 10 dual, 0 com, 5 col

3: 5 dual, 5 com, 5 col

4: 5 dual, 0 com, 10 col

5: 0 dual, 5 com, 10 col

6: 0 dual, 3 com, 12 col

7: 0 dual, 1 com, 14 col

Figure 3.3 Case study 1 - Different combinations of a total of 15 spacecraft. Systems considered opera-
tional down to 4 collecting spacecraft and 1 combining spacecraft.

bining spacecraft for every two collecting spacecraft. In other words, the spacecraft came

in sets of two collecting spacecraft and one combining spacecraft. If there were only three

collecting spacecraft in any given state, one of these spacecraft was simply a back-up and

not used to produce images in that state. Each set of one combining spacecraft and two

collecting spacecraft was considered a baseline. The number of images was then calcu-

lated in the same fashion as discussed previously. While this case study requires no new A

matrices, it does require the method of calculating the number of baselines to be changed.

This change also took very little time to complete and the case study was completed in

approximately one hour. The case study was run on combinations of six total spacecraft,

and the results can be seen in Figure 3.4. The results from this case study can also be com-

pared to the values shown in Figure 3.2 to see the difference in productivity between the

two definitions of baselines.

3.3 Cost Model

A cost model was developed to estimate the total life cycle cost of a separated spacecraft

interferometer system. This model was developed for the purpose of comparing architec-

tures that differ in only the number of each type of spacecraft and money spent to improve

Cost Model 65

Number of Images for Various Architectures

2 4 6 B 1 0 1 2 U 1 6

Architecture

Architecture Kev
1: 6 dual, 0 corn, 0 col
2: 0 dual, 2 com, 4 col
3: 0 dual, 1 corn, 5 col
4 1 dual, 1 corn.4~01
5: 1 dual, 0 corn, 5 col
6 1 dud, 2 corn, 3 col
7: 2 dud, 0 corn, 4 col
8: 2 dual, 1 corn, 3 col
9: 2 dual, 2 corn, 2 col
1 0 3 dual, 0 corn, 3 Col
11: 3 dual, 1 corn, 2 col
12: 3 dual, 2 corn, 1 col
13: 4 dual, 0 corn, 2 col
14: 4 dual, 1 corn, 1 col
15: 4 dual, 2 corn, 0 col
1 6 5 dual, 0 corn, 1 col
17: 5 dual, 1 corn, 0 col

Figure 3.4 Case study 2 - Combinations of six total spacecraft. Number of baselines considered number
of two collecting spacecraft, one combining spacecraft pairs.

the component reliabilities. Therefore factors that would have a large effect on the cost of

a system, but which were constant among all architectures, such as mirror diameter size,

were not considered. Only two factors were considered in estimating the relative cost of

an architecture: manufacturing and operations cost.

When modeling the manufacturing cost, the fact that all architectures only varied by the

number of each type of spacecraft was taken advantage of. Using this fact, all theoretical

first unit costs of the components of each spacecraft (optics and bus) were assumed to be

known. These theoretical first unit costs can be set by the user as inputs. The default val-

ues for the theoretical first units costs are $25M for combining optics, $15M for collecting

optics, $20M for combining and collecting spacecraft buses, and $30M for dual function-

ing spacecraft buses. These values were chosen for their relationships with one another.

The combining optics in any interferometer system are much more complicated than the

collecting optics, and were therefore priced higher. The combining bus and collecting bus

were priced equal since they are generic spacecraft buses. However, the dual functioning

bus was costed higher than the other two buses to account for the added complexity

needed when a spacecraft can perform either function. Lastly, the total theoretical first

66 MODEL DEVELOPMENT

unit cost is $45M for a combiner, $35M for a collector, and $70M for a dual functioning

spacecraft. This means that the cost of buying separate combining and collecting space-

craft ($80M) is more than buying one dual functioning spacecraft ($70M), but is still in

the same order of magnitude. With the theoretical first unit cost of all components known,

the theoretical first unit cost of each type of spacecraft can then be found. Once the theo-

retical first unit cost of each type of spacecraft is known, the total manufacturing cost for

each type of spacecraft can be found using the total number of spacecraft of that type in

the system and a learning curve savings. The learning curve slope can be input by the

user, but is set as a default at 95%, as recommended in Wertz and Larson [Wertz and Lar-

son, 19991. The components are not affected by a learning curve savings individually, but

only as total spacecraft savings. The manufacturing costs of each type of spacecraft are

found in Equations 3.23 through 3.25.

I I

(3.23)

(3.24)

(3.25)

In Equations 3.23 through 3.25, DB, , MBTFU, LBTFU, MOT,, and LOTFU are the theo-

retical first unit costs in $M of the dual-functioning spacecraft bus, combining bus, col-

lecting bus, combining optics, and collecting optics respectively. Dual, Corn, and Col are

Cost Model 67

the number of dual functioning, combining, and collecting spacecraft in the system

respectively, and rn is the learning curve slope percentage.

Operations costs are assumed to scale with the number of baselines. This is due to two

factors: 1) size of clusters and 2) time between cluster reorientations. More baselines lead

to larger clusters needed to keep in formation, which requires more effort than smaller

clusters. Also, the larger the number of baselines, the faster the light can be collected, and

therefore the sooner the cluster needs to be reoriented to begin a new image. While smaller

clusters will need to switch configurations to gather more baselines and UV points, these

configuration moves will be smaller and less complicated than the moves required to

begin a new image. Since clusters with more baselines can collect more images in the

same time, the operations cost for these clusters will be higher because there is more com-

plicated cluster movement. A typical operations cost is given by the user as an input, in

terms of cost per baseline per month. Once the state definitions are found from the pro-

ductivity model, this typical cost can be turned into a vector of costs per month for each

state of the system based on the number of baselines in that state. This vector can then be

integrated, using the same procedure as described in Section 3.2.2, to find the total opera-

tions cost of the system.

CostPerState = ops x Nb (3.26)

(3.27) -1 A - l v e OpsCost = CostPerState-A (e -Z)Po

In Equation 3.26, ops is the baseline operations cost ($M/baseline/month) and Nb is a vec-

tor of the number of baselines in each state of the system. In Equation 3.27, A is the state-

transition matrix, rife is the total mission design lifetime (months), and Po is the vector of

probabilities of being in each state at the beginning of the mission.

Once the manufacturing and operations cost of a system are known, the total life cycle

cost of the system can be calculated. This total cost is simply the manufacturing cost, plus

68 MODEL DEVELOPMENT

the operations cost, plus the amount of money spent to improve each component’s reliabil-

i ty.

Cost = DualCost + ComCost + ColCost + OpsCost + Xmo + Xlo + Xb (3.28)

In Equation 3.28, Xmo, Xlo, and Xb are the money spent to improve the reliability of the

combining optics, collecting optics, and all three buses respectively ($M).

3.4 Reliability Model

There are two unique ways to improve the overall reliability of a complex system consist-

ing of multiple components - increase redundancy of components or improve the initial

reliability of these components. These two methods are both captured in the design vector

of this problem. Redundancy in the system is captured by the number of each type of

spacecraft (combining, collecting, and dual functioning). Improving reliability is captured

by the money spent to improve the reliability of the components (combining optics, col-

lecting optics, and bus). Therefore, a model estimating the effect of each of these methods

needs to be developed. There are two steps to this model - estimating the reliability of a

system given the number of each type of spacecraft and the failure rates of those space-

craft, and improving the failure rates, or reliabilities, of the components given a certain

amount of money spent on improving the reliabilities.

3.4.1 Estimating Reliability

Once the state-transition matrix, or A matrix, is calculated, this matrix can be used to find

the probability that the system is any state at any time (see Equations 3.15 - 3.19). The

definition of reliability is the probability that the system is in a working state at the end of

the mission lifetime. Since the probability that the system is in each working state at the

end of the mission lifetime can be found from the state-transition matrix, the reliability is

therefore the sum of these probabilities. In this way, the reliability of the system can eas-

ily be found, using very little information that was not already calculated for the produc-

tivity analysis. This process is shown in Equations 3.29 and 3.30.

Reliability Model 69

A . life
Plife = e p*

Reliability = x P l v e (i)
i

(3.29)

(3.30)

In Equations 3.29 and 3.30, Plge is a vector of the probabilities that the system is in each

state at time t=Zife, life is the mission design lifetime of the system (months), Po is the vec-

tor of probabilities that the system is in each state at time t=O, and A is the state-transition

matrix.

3.4.2 Improving Reliability

It is possible to improve a component’s reliability by either further testing or improving

the design of the component. Each method takes additional money however. Therefore, a

model is necessary to predict how much a component’s reliability will improve if a given

amount of money is spent on either of these activities.

The reliability of any component is always between zero and one. In addition, while a sig-

nificant improvement in the reliability of a component may be improved when money is

initially spent on this task, the closer the reliability of the component gets to one, the more

difficult it is to improve this reliability further. The final reliability of any component,

after money is spent to improve the reliability, should therefore asymptote to one. This

relationship is captured in the model shown in Equation 3.3 1.

(3.3 1)

In Equation 3.31, Rc is the final reliability of the component, R , is the initial component

reliability, X, is the money spent to improve the component in millions of dollars, and S is

a scale factor. Notice that the final component reliability will never be less than the initial

component reliability, assuming that X, is restricted to be greater than or equal to zero.

70 MODEL DEVELOPMENT

Additionally, if no money is spent to improve the reliability, Xc is zero and therefore the

last term in Equation 3.31 is also zero, and the final reliability is equal to the initial reli-

abiltiy. As the money to improve the reliability is increased, the last factor of the second

term in Equation 3.3 1 becomes closer to one, implying that the final reliability approaches

one [Jilla, 20001. This relationship can be seen graphically in Figure 3.5.

Figure3.5 Model of how money spent to improve reliability is
translated to actual reliability improvement

The model discussed here is implemented for three components of separated spacecraft

interferometry systems - combining optics, collecting optics, and a generic bus. See

Section 2.2 on page 44 for a discussion of the model used to describe these SSI systems

and how these components fit together to form spacecraft. The initial reliabilities of each

component and a general scale factor can be set by the user.

3.5 Results

Once the total expected number of images, life cycle cost, and reliability of a system are

calculated, the performance of the system can be reported with three different outputs: the

number of images, the cost per image, and the reliability of the system. Each output is

important and captures a different aspect of the system. Eleven possible architectures,

each with a total of four spacecraft and no money spent to improve the reliability of com-

ReSUltS 71

ponents, were modeled using the previously described productivity, cost, and reliability

models. TheresultsareshowninFigure 3.6, withanarchitecture keyshowninTable 3.5.

1 2 3 4 5 6 7 8 9 10 11 - 1 2 3 4 5 6 7 8 9 10 11 -
b.

P
a
Pt
3

1 2 3 4 5 6 7 8 9 10 11

Mlibam

c
Figure 3.6 productivity modeling results. a) Number of images. b) Cost per image. c) Reliability. See

Table 3.5 for architecture key.

The results for this case study show that while architecture one (four dual functioning

spacecraft, no combining or collecting spacecraft) produces both the highest number of

images and highest reliability, architecture eleven (no dual functioning spacecraft, one

combining spacecraft, and three collecting spacecraft) produces the lowest cost per image.

This leads to the need to compare architectures based on a combination of number of

images, cost per image, and reliability.

72 MODEL DEVELOPMENT

TABLE 3.5 Architecture key for case study shown in Figure 3.6

Architecture Key
1 - 4 dual, 0 com, 0 col.
2 - 3 dual, 1 com, 0 col.
3 - 3 dual, 0 com, 1 col.
4 - 2 dual, 2 com, 0 col.
5 - 2 dual, 1 com, 1 col.
6 - 2 dual, 0 com, 2 col.
7 - 1 dual, 2 com, 1 col.
8 - 1 dual, 1 com, 2 col.
9 - 1 dual, 0 com, 3 col.
10 - 0 dual, 2 com, 2 col.
11 - 0 dual, 1 com, 3 col.

3.6 Chapter Summary

This chapter has discussed the method used to automatically generate the state-transition

matrix for any system. This matrix is necessary in order to estimate all three life cycle

metrics. The method used to generate the state-transition matrix was tested and verified.

In addition to allowing the analysis of any architecture, and not just the architectures a

designer has previously thought of, this method also proved to reduce errors in the genera-

tion of these matrices. Next, the productivity model, in terms of the expected total number

of images an architecture would produce by the end of the mission lifetime, was discussed

in detail. This model was then bench-marked and tested in several varying case studies.

The models and methods used to estimate the total life cycle cost of the system, including

manufacturing and operations costs, were also discussed. Next, the method of estimating

reliability, defined as the probability that the system is in a functioning state at the end of

the mission lifetime, from the state-transition matrix was covered. In addition, a model to

estimate the total increase in the reliability of a component for a given amount of money

spent in an attempt to improve the initial reliability was developed. Finally, the results of

using all three of these models on an example case study were given. It was shown that no

one architecture, of the eleven analyzed, had the highest estimated productivity and reli-

ability while still maintaining the lowest cost. This leads to the need to compare architec-

Chapter Summary 73

tures based on a combination of these metrics. The method for accomplishing this and the

results will be discussed in Chapter 4.

Chapter 4

ARCHITECTURE COMPARISON
BASED ON TOTAL PERFORMANCE

A system with high reliability has a higher probability of functioning throughout the mis-

sion lifetime. Therefore, systems with higher reliabilities will generally function longer

than systems with lower reliabilities. In a similar manner, systems with high productivity

will generally produce more images than systems with low productivity. Reliability or

productivity alone does not make an acceptable system however. Neither a system that

lasts for several years, but takes months to produce a single image, nor a system that can

produce an image in just minutes, but only functions for a month will be funded or s u p

ported. In addition, a system which has the highest reliability and productivity possible,

but would also cost double the allowable budget, will not be supported. Therefore, it is

important to find a way to compare the total performance, by coupling reliability, produc-

tivity, and cost, of multiple systems in order to make informed decisions of which archi-

tecture is “best”, or which family of systems should be examined in fuIther detail.

This chapter will first discuss the method used to compare the total performance of differ-

ent user defined architectures. Next, several case-studies showing the results of using this

method will be presented. These case studies will first examine architectures defined only

in terms of the number of each type of spacecraft, and will then move on to include money

spent to improve component reliabilities in the design vector.

75

76 ARCXIIl’ECTuRE COMPARISON BASED ON TOTAL PERFORMANCE

4.1 Total Performance

The major step needed to be able to compare architectures based on their total perfor-

mance, including reliability, productivity, and cost, is to combine all three of these metrics

into one total performance metric, or score. This was done initially only to compare dif-

ferent user defined architectures, and not to explore the entire design space such as what

would be done with an optimization tool. For a discussion on the performance metric used

in an optimization tool, where the entire design space is explored, please see Section 5.1.1

on page 105.

4.1.1 “Score” Metric Formulation

The performance, or “score” metric, is basically a weighted sum of the expected number

of images, reliability, and cost per image for a given architecture. Please see Section 3.2

on page 55 for a discussion on the method of calculating the expected number of images,

Section 3.3 on page 64 for a discussion on the method of calculating the cost per image,

and Section 3.4 on page 68 for a discussion on the method of calculating the reliability for

a given system. The expected number of images and the reliability are both “larger is bet-

ter” metrics. That is to say that the more number of images a system produces and the

higher the reliability of the system, the more advantageous the system is. Contrarily, the

cost per image is a “smaller is better” metric since the less the cost of an image is, the

more advantageous the system producing that image is. Since two of the three compo-

nents were already “larger is better” metrics, it was decided to make the overall perfor-

mance metric “larger is better” as well. Therefore, it was necessary to sum scaled and

weighted versions of the expected number of images, the reliability, and the inverse of the

cost per image.

It should be noted that the three components of the performance metric are of different

orders of magnitude. The productivity, or expected number of images, is on the order of

thousands. The reliability is always between zero and one. The cost per image is on the

order of one tenth, and the inverse of the cost per image is on the order of ten. In addition,

Total Performance 77

when comparing two architectures it is more the relative difference, or percentage differ-

ence, between the values of these metrics that different architectures produce that matters,

and not the absolute difference. For example, the difference between 2000 images and

2001 images is much less substantial of a difference than the difference between a reliabil-

ity of 0.9 and 0.95. Therefore, each metric is scaled by the largest (or smallest in the case

of cost per image) value of that metric calculated for any of the systems being compared.

In this way, a system which produces the largest expected number of images will always

have a value of one for the productivity portion of the performance metric. A system with

the second largest expected number of images, but only by one or two images, will there-

fore have a value of near one, but not exactly one. This allows a distinction to be made

between architectures, without ranking and forcing the second best performing system in

one metric to be a given number of points below the first. Scaling each metric by the max-

imum value found also removes all units such that the relative “score” for each metric can

be summed together. The maximum and minimum values of each metric can also be eas-

ily replaced with threshold values, if performance beyond those values is not any more

beneficial.

In addition to scaling, the metrics are also weighted before being summed to produce the

final performance metric. The total of the three weightings, one each on productivity, reli-

ability, and cost, should sum to one. These weightings are user defined as inputs and can

easily be adjusted to assess impact. The weightings are important to allow an individual

program or designer to decide how important each aspect of the system is to their particu-

lar design. These weighting could vary widely from project to project but are necessary to

capture the true needs of individual programs.

The preceding system of both scaling and weighting leads to the final “score” metric

shown in Equation 4.1 for the i* architecture being evaluated. It should be noted that the

“score” for any architecture will always be between zero and one. If one architecture has

the highest expected number of images, highest reliability, and lowest cost per image of all

architectures evaluated, that architecture would receive a “score” of exactly one.

78 ARCHITECTURE COMPARISON BASED ON TOTAL PERFORMANCE

(4.1)
Reliability(i) + Productivity(i) + W Min CostPerImage

RMaxReliability PMaxProductivity CostPerImage(i) Score(i) = w

In Equation 4.1, Score(i) is the total performance metric, Reliability(i) is the reliability,

Productivity(i) is the number of images, and CustPerZmage(i) is the cost per image, all for

the i* architecture evaluated. In addition, wR, wp and wc are the weighting values

assigned to the reliability, productivity, and cost per image respectively, while MaxReli-

abilify, MmProductivify, and MinCostPerZmage, are the best values of each of the three

metrics among all the architectures compared.

It is important to note that each of the three terms in Equation 4.1 captures a unique system

property. The reliability is defined as the probability that the system is in a working state,

with at least one spacecraft capable of combining light and two spacecraft capable of col-

lecting light functional at the end of the mission lifetime. This metric is important if the

system must function for a given amount of time in order to have the mission considered

successful.

While the reliability captures the amount of time the system is expected to function, it con-

tains no information on how productive the system is during that lifetime. The productiv-

ity is defined as the expected total number of images the system will produce by the end of

its mission lifetime. Recall that the imaging rate of the SSI systems modeled here scales

with the number of spacecraft capable of collecting light.

Systems with a large number of collecting spacecraft and only one spacecraft capable of

combining light will be very productive while they are functioning; however, these sys-

tems will fail as soon as the combining spacecraft fails, causing the system to have a rela-

tively low reliability. If two systems that have the same cost are analyzed, one of which

contains redundant combining spacecraft and therefore fewer collecting spacecraft, and

the other of which contains only one combining spacecraft and more collecting spacecraft,

the first system will have a lower average imaging rate, but will function longer than the

second system. Since productivity, as measured by the total expected number of images,

Total Performance 19

can be thought of as the average imaging rate multiplied by the time the system is func-

tioning, these two systems may have nearly the same productivity. However, the first sys-

tem will have a higher reliability. Conversely, two different systems, again of equal cost,

can have similar reliabilities but varying productivities. Consider two systems, each with

redundant combining spacecraft, but the first system with as many redundant collecting

spacecraft as the budget allows and the second with fewer collecting spacecraft and the

extra money in the budget spent on improving the reliability of these collecting spacecraft.

These two systems may have very similar reliabilities, but the first system will have a

higher average imaging rate, and will therefore produce more images than the second.

Reliability and productivity are therefore unique metrics, since it is possible to have both

two systems with similar productivities and different reliabilties, and two systems with

similar reliaiblities and different productivities.

The third term in Equation 4.1, cost per image, is also a unique metric. The cost of a sys-

tem depends on the number of each type of spacecraft and the money spent to improve the

reliabilities of components. The more total spacecraft a system has, the more complex it

is, and therefore more expensive it is to operate. In addition, dual functioning spacecraft

cost more than combining spacecraft, which in turn cost more than collecting spacecraft.

One of the many ways to improve reliability and productivity at the same time is to use

dual functioning spacecraft. These spacecraft can collect light, making the system more

productive while another spacecraft is combining light, and can switch over to combining

light, allowing the system to continue to function if the spacecraft that was previously

combining light fails. However, since the dual functioning spacecraft cost the most of all

three types of spacecraft, this system will be more expensive than if the dual functioning

spacecraft was replaced by either an additional combining or collecting spacecraft. This

interaction between improved productivity and reliability and increased cost of the system

can be captured by including one of two metrics in the total performance metric; cost or

cost-effectiveness. In this case, cost-effectiveness is defined as the cost per image. While

either of these metrics, cost or cost-effectiveness, could be used in the total performance

metric, the research presented here used cost-effectiveness, since it captures the relative

80 ARCHITECTURE COMPARISON BASED ON ‘IDTAL PERFORMANCE

increase in cost compared to an increase in the number of images. If desired, changing the

final term in Equation 4.1 to cost instead of cost per image would be a trivial change and

one that could be explored in the future.

4.1.2 Results

The reliability and “score” metric described above were analyzed for a case study involv-

ing 16 different architectures, each with a total of six spacecraft, with no money spent on

improving any component reliabilities. The specific architectures can be seen in

Table 4.1, and the results of the case study can be seen in Figure 4.1. Note that for this

case study, wR and w p were set to 0.3 and wc was set to 0.4.

1800,

i 1800

f 1500

% l7O0
1600

1400
1 2 3 4 5 8 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 8

ArrhHWN

0.95
0.9

0.85
p 0.8

P 0.65

3 0.75
a 0.7

0.8
0.55
0.5

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 8

Anhlt.ctun

a. b.

0.23 - 0.22
J, 0.21
8 0.2 1 0.10 a 0.18
3 0.17
0 0.18

0.15
1 2 3 4 5 8 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6

ArrhN.ch*.

C.

g 0.85
8 0.83

0.79
0.77
0.75

1

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6

ArcNt.ctun

d.

I

Figure 4.1 Case Study 1 - combinations of 6 total spacecraft. a) Number of Images b) Reliability c)
Cost per Image d) “Score”. See Table 4.1 for Architecture Key

Total Performance 81

TABLE 4.1 Architecture key for case study 1.

Architecture Key
1 - 0 dual, 1 corn, 5 col.
2 - 1 dual, 1 corn, 4 col.
3 - 2 dual, 1 corn, 3 col.
4 - 3 dual, 1 corn, 2 col.
5 - 4 dual, 1 corn, 1 col.
6 - 5 dual, 1 corn, 0 col.
7 - 6 dual, 0 corn, 0 col.
8 - 5 dual, 0 corn, 1 col.
9 - 4 dual, 0 corn, 2 col.
10 - 3 dual, 0 com, 3 col.
11 - 2 dual, 0 corn, 4 col.
12 - 1 dual, 0 corn, 5 col.
13 - 1 dual, 2 corn, 3 col.
14 - 2 dual, 2 corn, 2 col.
15 - 3 dual, 2 corn, 1 col.
16 - 4 dual, 2 corn, 0 col.

In this case study, architecture seven (six dual functioning spacecraft, no combining or

collecting spacecraft) has the highest expected total number of images and reliability.

Architecture one (zero dual functioning spacecraft, one combining spacecraft, and five

collecting spacecraft) has the lowest cost per image. However, architecture seven is very

expensive, while architecture one is neither productive nor reliable. Architecture ten

(three dual functioning spacecraft, no Combining spacecraft, and three collecting space-

craft) has the best combination of all three metrics, even though it did not perform the best

in any of the individual categories.

The same case study that was seen in Section 3.5 on page 70 was carried out again, this

time with the total “score” calculations. The results can be seen in Figure 4.2. In this par-

ticular case study, the architecture with the lowest cost, architecture eleven (no dual func-

tioning spacecraft, one combining spacecraft, and three collecting spacecraft), was also

the architecture with the best total performance. It was not however the same as the archi-

tecture with both the highest productivity and highest reliability - architecture one (four

dual functioning spacecraft, no combining or collecting spacecraft).

82 ARCHITECTURE COMPARISON BASED ON TOTAL PERFORMANCE

I

1 2 3 4 5 6 7 8 9 10 11

ArchWlun

0.55 1

05

B 045

1 0 4

2 035

0 3

0 25
1 2 3 4 5 6 7 8 9 10 11

Architacturn

a b.

b O3

5 0 2

2 025

015

0 1
1 2 3 4 5 6 7 8 9 1 0 1 1

Architacturn

-“

0 8

s O 7
8 0 6

0 5

0 4
1 2 3 4 5 8 7 8 9 10 11

hchbctun

C. d.

Figure 4.2 Case Study 2 - combinations of 4 total spacecraft. a) Number of Images b) Reliability c)
Cost per Image d) “Score”. See Table 4.2 for Architecture Key

TABLE 4.2 Architecture key for case study 2.

Architecture Key
1 - 4 dual, 0 corn, 0 col.
2 - 3 dual, 1 corn, 0 col.
3 - 3 dual, 0 corn, 1 col.
4 - 2 dual, 2 corn, 0 col.
5 - 2 dual, 1 corn, 1 col.
6 - 2 dual, 0 corn, 2 col.
7 - 1 dual, 2 corn, 1 col.
8 - 1 dual, 1 corn, 2 col.
9 - 1 dual, 0 corn, 3 col.
10 - 0 dual, 2 corn, 2 col.
11 - 0 dual, 1 corn, 3 col.

Reliability Optimization 83

4.2 Reliability Optimization

The analysis above compared architectures based only on the number of each type of

spacecraft. No money was spent to improve the reliability of any components, implying

the total reliability of the system could only be improved using redundancy. A model was

introduced in Section 3.4.2 on page 69 to predict how much a component’s reliability will

increase if a given amount of money is spent on testing or improving the design. A logical

next step in this process is to combine these two tools into one - a tool that can find the

“best” architecture, in terms of all three life-cycle metria, when an architecture is defined

in terms of both the number of each type of spacecraft and the money spent to improve the

reliability of individual components. The tool discussed here will once again only com-

pare a given set of user-defined architectures. Please see Chapter 5 for a discussion of

optimization tools used to explore the entire design space.

Once an architecture is defined in terms of the number of each type of spacecraft, addi-

tional money can be spent to improve the reliability of the individual components in the

system. The user can define the amount of money to be spent on the entire system, includ-

ing manufacturing spacecraft, operations, and improvements to component reliabilities, in

one of two ways. Please see Section 3.3 on page 64 for a discussion of the model used to

estimate this total system cost. The first method of defining the total amount of money

spent is to define a total system budget. If this method is used, the cost per image metric

becomes redundant with the number of images metric, since all systems will end up cost-

ing the same amount of money. The total system budget method is useful for projects that

have a given budget, but have not yet decided on an architecture. This method allows

these projects to find the most productive, reliable, and cost-effective systems possible

within their budget. This method is shown in Equation 4.2, where Budget is user defined.

TotalSystemBudget = Budget (4.2)

The total system budget method is not useful for projects in which the total budget is not

set, but simply needs to be as low as possible. In this case, it may be advantageous to

84 ARCHITECTURE COMPARISON BASED ON TOTAL PERFORMANCE

examine systems that may not be as productive as other systems, but also cost signifi-

cantly less money. The second method available to decide a total system budget for each

architecture analyzed is to define the total system budget as a given percentage of the orig-

inal cost of the system, without any improvements to components. With this method, a

user can define a percentage, set at 20% as a default value, to be used. The total cost of

each original system is then calculated. Next the final total system budget is calculated.

For example, for the default percentage value, the initial system cost is multiplied by 1.2

to find the total system cost. This method of finding the total system cost is shown in

Equation 4.3, where percent is user defined, and ZnitialSystemCost is found from the cost

model with the number of each type of spacecraft defined from the user defined architec-

ture and no money spent on improvements.

TotalSystemBudget = InitialSystemCost x (1 + E$! (4.3)

It should be noted that the sum of the money spent to improve each component does not

necessarily equal the total system cost minus the initial system cost in either of these two

methods. This implies that the concept of taking the amount of money defined by the total

system budget minus the initial system cost and finding the optimum way of dividing this

money to improve different components will not work. This is due to the operations part

of the cost model. Since the operations cost is based on the number of baselines, a system

that has had failures, and therefore has fewer baselines than it did originally, will cost less

per month than the original system did. Therefore, if money is spent to improve the reli-

ability of components, and therefore reduce the failure rates, the systems should remain in

these more expensive initial states for longer than was originally the case. Therefore,

since more money is needed for operations during the lifetime of the mission, the sum of

the amount of money spent to improve the individual component reliabilities should be

less than the total system budget minus the initial system cost.

Reliability Optimization 85

4.2.1 Optimization Problem Formulation

The optimization problem to find the best way to spend money improving individual com-

ponent reliabilities is formulated in Equation 4.4.

Cost(x, p) c TotalSystemBudget
xi > 0

such that

(X = [Xmo Xlo Xb]
where

' (4.4)

(P = [dual com col ...]

In Equation 4.4, x is the design vector consisting of the amount of money spent on improv-

ing the reliability of each component: combining optics (Xmo), collecting optics (Xlo), and

bus (Xb). The parameter vector, p, includes the number of each type of spacecraft in the

given architecture: dual functioning (dual), combining (corn), and collecting (col). The

parameter vector also includes a large number of other parameters that are held constant

for all architectures (Le. number of UV points needed, initial failure rates of components,

etc.). TotaZSystemBudget is the total system budget calculated by one of the two methods

described above (see Equations 4.2 and 4.3).

The optimization problem shown in Equation 4.4 is solved using a simulated annealing

algorithm. Please see Section 5.1.1 on page 105 for a description of simulated annealing.

Each design variable is allowed to vary between zero and $1OOM in increments of $5M.

In addition, since this optimization program needs to be run multiple times for each com-

parison study (once for each architecture being tested), it is important that it be time-effi-

cient. Therefore, the algorithm is set to run 500 iterations before terminating and reduces

the system temperature every iteration. Simulated annealing is a heuristic optimization

technique, however, and is not guaranteed to find the true optimal solution. The probabil-

ity of finding this true optimum also decreases as the number of iterations decreases.

Therefore, a sanity check has been built into the optimization program to be certain that

the solution reported has a possibility of being at or near the true optimal solution. While

86 ARCHITECTURE COMPARISON BASED ON TOTAL PERFORMANCE

there is no way to know before the optimization algorithm runs how any money should be

divided among components to improve reliability, it is clear that if all of this money is not

spent, then more money could be spent to improve one of the component’s reliability, and

therefore improve the entire system reliability. Therefore, once the simulated annealing

algorithm has returned an initial solution of how much money should be spent to improve

each type of component’s reliability, the optimization algorithm checks the total cost of

the system reported, including spacecraft costs and improvement costs. If the total system

cost of the architecture reported by the simulated annealing algorithm is within 98% of the

allowable system budget, calculated either as a user input or as the initial system cost plus

a user defined percentage of the initial system cost, the solution is accepted and returned

as the optimal solution. If the solution the simulated annealing algorithm returns produces

a total system cost of less than 98% of this allowable system budget however, the optimi-

zation algorithm does not accept the solution and the simulated annealing algorithm is

called again. The initial starting point for this second call to the simulated annealing algo-

rithm is set at the final solution returned by the first call to the algorithm. This process is

repeated until the optimization algorithm accepts the solution returned by the simulated

annealing algorithm, and therefore returns the solution as an “optimal” solution.

4.2.2 Results

User defined architectures can now be analyzed and compared when additional money

was allowed to be spent to improve the reliability of the components. Input architectures

are again defined as the number of each type of spacecraft. In addition, the user defines

which method, total system budget or percent of initial cost, is used for determining the

total cost of the system. These methods are described above in Section 4.2. The user also

defines any relevant parameters to either method, such as the total budget or the percent of

the initial cost. The output architectures are defined as the number of each type of space-

craft and the money spent to improve the reliability of each component: combining optics,

collecting optics, and bus. The architectures are compared using the four metrics

Reliability Optimization 87

described in Section 4.1: productivity (number of images), reliability, cost-effectiveness

(cost per image), and combined “score”.

The same case studies described in Section 4.1.2 on page 80 were carried out again, this

time with extra money spent on improving component reliabilities. The case study of

architectures with a total of four spacecraft was carried out with a total system budget of

$280M enforced. The case study with a total of six spacecraft was carried out using

twenty percent of the initial system cost to improve component reliabilities. The same

weighting values as used in Section 4.1.2 were used for these case studies (wp = wR = 0.3,

WC = 0.4).

The first step in running this algorithm is tuning the simulated annealing parameters to try

to achieve the best performance out of the optimization scheme. In this particular case,

the only parameter needed to tune is the initial guess of the difference in reliabilities

(objective functions) between two neighboring design vectors, &Ztasuess. The algo-

rithm was run with different settings for this parameter. Each parameter setting was run

ten times, with twenty iterations for each optimization. This was done for two different

budget settings, $280M for the four total spacecraft with a total system budget of $280M,

and $4oOM for the six total spacecraft using twenty percent of the initial cost of the system

to improve the component reliabilities test case. The results can be seen in Figure4.3.

Since the objective function is a “larger is better” metric, a &Z?azuess of 0.01 returns the

best average solution in both budget cases and is therefore used in both case studies

described below.

The initial results, in terms of just the division of money to improve component reliabili-

ties, for the case study of architectures with a total of six spacecraft can be seen in

Figure 4.4. Please see Table 4.1 on page 81 for an architecture key for this case study.

Due to the stochastic nature of the simulated annealing algorithm used to find the division

of money, it is important that the first step in analyzing these results is for the designer, or

user, to perform a sanity check and be sure that the optimizer has indeed found an optimal,

88 ARCHITECTURE COMPARISON BASED ON TOTAL PERFORMANCE

Budget = S280M

. -1 0.82

".- .
0 0.1 0.2 0.3 0.4 0.5 0.6

mIo GW=

Budget = MWM

O'= 5

0 OM 0.1 0.15 0.2 0.25

ala G w r

a. b.
Figure 4.3 Tuning data for simulated annealing algorithm to optimize distribution of money to improve

different component reliabilities for a total system budget of a) $280M and b)$400M.

or at least near optimal, method of dividing the money for each architecture. This is

accomplished most easily by finding patterns, or trends, to the division of money and

ensuring that the solution for each architecture follows these trends. The trends for this

case study are seen in Table 4.3 and Table 4.4.

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6

Anhlbclun

Figure 4.4 Initial results of division of money to improve component reliabilities for the case study with
architectures with a total of six spacecraft and 20% of the initial system cost being spent on
improving component's reliabilities.

Reliability Optimization 89

TABLE 4 3 Architectures from case study of combinations of six total spacecraft with 20% of initial
system cost spent on improving component reliabilities, sorted in ascending order of the difference between
the total number of spacecraft capable of collecting light minus the total number of Spacecraft capable of
combining light (D@). Highlighted architectures have more money spent on improving collecting optics
than on improving combining optics.

$Mon $Mon

Arch. Duals Coms Cols OD- OD* bus corn DB.
corn col $Mon Total Total

11 2 0 4 20 5 20 6 2 4
12 1 0 5 25 5 10 6 1 5

In Table4.3, the full architectures are listed, including the money spent to improve the

reliability of each component, along with the total number of spacecraft capable of com-

bining light, the total number of spacecraft capable of collecting light, and the difference

between these last two categories. It should be noted that a dual functioning spacecraft is

capable of both combining and collecting light and is therefore counted in both categories.

This implies that while each architecture contains a total of six spacecraft, the sum of the

total number of spacecraft capable of combining and collecting light will be greater than

six as long as there are dual functioning spacecraft in the architecture. The architectures in

Table4.3 are sorted in ascending order of the difference between the total number of

90 ARCHITECTURE COMPARISON BASED ON TOTAL PERFORMANCE

spacecraft capable of collecting light minus the total number of spacecraft capable of com-

bining light (Difl). In addition, those architectures in which more money is spent on col-

lecting optics than is spent on combining optics are highlighted. The trend in this case is

that more money is spent on improving the collecting optics reliability than on improving

the combining optics reliability only when the difference in the total number of spacecraft

capable of collecting versus combining light is less than two. This makes intuitive sense

since in order for an architecture to be functional two collecting spacecraft are required

versus only one combining spacecraft. Once there are two or more additional spacecraft

capable of collecting light than there are capable of combining light, the redundancy

inherent in the architecture for the collecting spacecraft provides more reliability, and the

combining optics reliability is improved first.

In Table 4.4, the full architectures are again listed, but are this time sorted in ascending

order by the total number of dual functioning spacecraft in the architecture. In this table

the architectures in which more money is spent to improve the reliability of one of the two

types of optics than is spent to improve the reliability of the bus are highlighted. With the

exception of architectures one and four, all architectures in which there are only one or no

dual functioning spacecraft spend more money improving the reliability of one of the

types of optics than improving the reliability of the bus. This also makes intuitive sense,

since with both other types of spacecraft, combining and collecting, a failure in the optics

or in the bus results in a failure in the spacecraft. Only in dual functioning spacecraft is a

failure in the bus a worse case scenario than a failure of a set of optics. Therefore, it is

hypothesized that this trend is indeed true, and that architectures one and four are not opti-

mized correctly.

To test this hypothesis, architectures one and four are run again, this time with lo00 itera-

tions of the simulated annealing algorithm instead of 500. The results of the original runs

for these architectures are then replaced with these new results. The score metrics are

computed again for all sixteen architectures once the new results are in place, since these

score metrics depend on the maximum and minimum of each metric between all architec-

Reliability Optimization 91

6
8

7

TABLE 4.4 Architectures from the case study of combinations of six total spacecraft with 20% of initial
system cost spent on improving component reliabilities, sorted in ascending order of number of dual
functioning spacecraft. Highlighted architectures have more money spent on improving the collecting or
combining optics than on improving the bus.

5 1 0 0 20 40
5 0 1 0 20 40
6 0 0 10 15 40

~ ~ ~ ~ ~

tures being compared. The final set of results for this case study of combinations of six

total spacecraft can be seen in Figure 4.5 and Tables 4.5 and 4.6. Tables 4.5 and 4.6 corre-

spond directly with Tables 4.3 and 4.4, but with the new results for architectures one and

four in place. The pattern in Table 4.5 is identical to that in Table 4.3, implying that the

trend of spending more money on collecting optics rather than combining optics only

when there are two or more additional spacecraft capable of collecting light than there are

capable of combining light still holds. In addition, the pattern in Table 4.6 is more com-

plete than in Table 4.4, implying that the hypothesis that more money should be spent on

improving optics rather than the bus when only one or no dual functioning spacecraft are

in the architecture is true.

92 ARCHITECTURE COMPARISON BASED ON TOTAL PERFORMANCE

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6

ArchlWChlN

Figure 4.5 Final results of division of money to improve component’s reliabilities for the case study
with architectures with a total of six spacecraft and 20% of the initial system cost being
spent on improving component’s reliabilities.

While the optimization scheme did not find the true optimum for architectures one and

four the first time around, it did find very good solutions. This can be seen in Figure 4.6,

which shows the original “score” metric for all the architectures compared with the recal-

culated “score” metric once architectures one and four were replaced with better solutions.

It is clear that the order of architectures from “best” to “worst” is preserved, and that the

difference in all the architectures “scores” is very small. It should be noted that in general,

changing two architectures design vectors should only change the “scores~’ associated

with those two architectures. In this case, however, architecture one both before and after

being re-run, has the lowest cost per image of any architecture. Therefore, when this

architecture was re-run, and all of it’s system metrics were slightly changed, it had an

effect on all the architectures tested, and not just this particular architecture.

The final full results of this case study can be seen in Figure 4.7, which can be compared

with Figure4.1 to see the effect of using more money to improve the reliability of the

components. While architecture seven still has the highest number of images and reliabil-

ity and architecture one still has the lowest cost per image when additional money is spent

to improve component reliabilities, the relative difference between architectures has

Reliability Optimization 93

$Mon $Mon
corn col

TABLE 45 Final architectures from case study of combinations of six total spacecraft with 20% of initial
system cost spent on improving component reliabilities, sorted in ascending order of the difference between
the total number of spacecraft capable of collecting light minus the total number of spacecraft capable of
combining light (Difi). Highlighted architectures have more money spent on improving collecting optics
than on improving combining optics.

$Mon Total Total

3
9
2

2 1 3 20 5 25 5 3 2
4 0 2 20 15 25 6 4 2
1 1 4 20 15 10 5 2 3

10
1
11
12

changed. This is due to the fact that some architectures have larger changes to their pro-

ductivity rate and reliability than other architectures when this extra money is spent.

Therefore the architecture with the best combination of all metrics, or the best “score”

metric, has changed from architecture ten (three dual functioning, no combining, and three

collecting spacecraft) with no extra money spent, to architecture two (one dual function-

ing, one combining, and four collecting spacecraft) when extra money is spent to improve

component reliabilities.

3 0 3 15 10 25 6 3 3
0 1 5 20 0 15 5 1 4
2 0 4 20 5 20 6 2 4
1 0 5 25 5 10 6 1 5

The initial results, in terms of just the division of money to improve component reliabili-

ties, for the case study of architectures with a total of four spacecraft and a total system

94 ARCHITECTURE COMPARISON BASED ON TOTAL PERFORMANCE

TABLE 4.6 Final architectures from case study of combinations of six total spacecraft with 20% of initia
system cost spent on improving component reliabilities, sorted in ascending order of number of dua
functioning spacecraft. Highlighted architectures have more money spent on improving the collecting or thc
combining optics than on improving the bus.

I 0.94 , 1 I
0.92

0 0.9
B r“ 0.88

g 0.86

8 0.84

0.82

0.8

Figure 4.6 “Score” metrics for architectures in the case study of combinations of six total spacecraft
with 20% of the initial system cost spent on improving component reliabilities both before
and after architectures one and four were re-run.

Reliability Optimization 95

1 2 3 4 5 6 7 8 9 l O l t 1 2 1 3 1 4 1 5 l 6

ArrN#..

a

0.24 4 I

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 U l 5 1 6

kemQ..

c

1

0. m
0.9

0.7

0.66

0.6
1 2 3 4 5 6 7 6 9 l O 1 1 1 2 1 3 U 1 5 1 6 -

b.

0.91

0. Be
0.9

0.88

1 0.88

f 0.84

0 . a

0.8

0.78

1 1

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 U 1 5 1 6 I Arcmd..

d.
4.7 Final results for case study of combinations of six total spacecraft with 20% of initial system

cost spent on improving component reliabilities. a) Expected total number of images for
each architecture. b) Reliability for each architecture. c) Expected cost per image for each
architecture. d) “Score” mebics for each architecture.

budget of $280M can be seen in Figure 4.8. Please see Table 4.2 on page 82 for an archi-

tecture key for this case study. Once again, the first step in analyzing these results is to

perform a sanity check by finding patterns, or trends, to the division of money and ensur-

ing that the solution for each architecture follows these trends. The trends for this case

study are seen in Table 4.7 and Table 4.8.

Table 4.7 is the equivalent to Table 4.3 for this case study. The full architectures are listed,

along with the total number of spacecraft capable of combining light, the total number of

spacecraft capable of collecting light, and the difference between these last two categories.

The architectures in Table4.7 are again sorted in ascending order of the difference

between the total number of spacecraft capable of collecting light minus the total number

of spacecraft capable of combining light, and those architectures in which more money is

96 ARCHITECTURE COMPARISON BASED ON TOTAL PERFORMANCE

I 701 I

I I 2 3 4 5 6 7 8 9 1 0 1 1

Arrhlbclun

8 Canbinin0 Optic!
8Cdkli Optics

Figure 4.8 Initial results of division of money to improve component reliabilities for the case study with
architectures with a total of four spacecraft and a total system budget of $280M.

spent on improving the collecting optics than is spent on improving the combining optics

are highlighted. Since no trend is immediately evident in this case, it is hypothesized that

the trend in this case is exactly the same as it was in the previous case study. More money

should be spent on improving the collecting optics reliability than on improving the com-

bining optics reliability only when there are two or more additional spacecraft capable of

collecting light than there are capable of combining light. This hypothesis implies that

three architectures should be run again - architecture four, architecture nine, and architec-

ture six. Table 4.8 is the equivalent of Table 4.4 for this case study. The full architectures

are again listed, but this time are sorted in ascending order by the total number of dual

functioning spacecraft in the architecture. In this table the architectures in which more

money is spent to improve the reliability of one of the two types of optics than is spent to

improve the reliability of the bus are highlighted. There is only one architecture among

the eleven tested in which the most money is spent to improve something other than the

bus reliability. This implies a different hypothesis for when to spend more money to

improve the reliability of the bus versus one of the sets of optics than was used in the first

case study with more spacecraft. In this case, the clearest pattern, and therefore the natural

hypothesis, is that the most money should always be spent to improve the bus reliability.

If this hypothesis is correct, then once again architecture nine is not at the optimum point

Reliability Optimization 97

Arch.
4

for that combination of spacecraft and should be tested again. Therefore architectures

four, six, and nine were all re-tested to try to find more optimal solutions.

SMon SMon
corn col SMon Total Total

Duals Coms Cols optics optics bus col corn Diff.
2 2 0 15 10 30 2 4 -2

TABLE 4.7 Architectures from case study of combinations of four total spacecraft with a total system
budget of $280M, sorted in ascending order of the difference between the total number of spacecraft capable
of collecting light minus the total number of spacecraft capable of combining light (Difl) . Highlighted
architeztures have more money spent on improving the collecting optics than on improving the combining
optics.

The final set of results for this case study of combinations of four total spacecraft with a

total system budget of $280M can be seen in Figure 4.9 and Table 4.9. Table 4.9 corre-

sponds directly with Table 4.7, but with the new results for architectures four, six, and nine

in place. Notice that while the distribution of money in architecture six is differeat than it

was originally, it still exhibits the same pattern of the most money spent on improving the

bus, followed by the collecting optics, followed by the combining optics. While this does

not initially seem to fit within the original hypothesis of only spending more money on the

collecting optics if the difference between the number of spacecraft capable of collecting

light minus the number of spacecraft capable of combining light is less than two, it should

be noted that the there are no combining spacecraft in this architecture. Therefore, one of

98 ARCHJTECTURE COMPARISON BASED ON TOTAL PERFORMANCE

TABLE 4.8 Architectures from case study of combinations of four total spacecraft with a total system
budget of $280M, sorted in ascending order of the number of dual functioning spacecraft. Highlighted
architectures have more money spent on improving the collecting or combining optics than on improving the
bus.

the two dual functioning spacecraft is required to be acting as a combining spacecraft at all

times for the system to be functioning. This implies one less collecting spacecraft is avail-

able than was originally reported, making the difference between the total number of

spacecraft capable of collecting light minus the total number of spacecraft capable of com-

bining light equal to one. This explains why more money should be spent to improve the

collecting optics of this system than to improve the combining optics. The other two

architectures, four and nine, do have solutions which fall into the hypotheses stated above.

Therefore, the hypothesis that more money is spent on combining optics only when there

are two or more additional spacecraft capable of collecting light than there are capable of

combining light holds for this case study as well. In this case study, however, it is never

more advantageous to spend more money to improve either set of optics than to improve

the bus. This trend is different in this case study than it was in the first case study, imply-

ing that all studies need to be examined individually and general trends of all systems can-

not be drawn without first examining the systems in question.

Reliability Optimization 99

Arch.

In I

$Mon $Mon
corn col $Mon Total Total

Duals C o w Cols optics optics bus d corn Diff.

I

1 2 3 4 5 6 7 8 9 IO 11

AKNmcbJm

Figure 4.9 Final results of division of money to improve component reliabilities for
the case study with architectures with a total of four spacecraft and a total
system budget of $280M.

TABLE 4.9 Final architectures from case study of combinations of four total spacecraft with a tdal system
budget of $28OM, sorted in ascending order of the difference between the total number of spacecraft capable
of collecting light mins the total number of spacecraft capable of combining light. Highlighted architectures
have more money spent on improving collecting optics than on improving combining optics.

The final results from the four spacecraft, total system budget of $280M, case study can be

seen in Figure 4.10, which can be compared to Figure 4.2 on page 82 from the case study

100 ARCHITECTURE COMPARISON BASED ON TOTAL PERFORMANCE

with no extra money spent to improve component reliabilities. While architecture eleven

has the best overall combination of life cycle metrics, or “score”, in both cases, it also has

the highest number of expected images and reliability in this case study, compared to

architecture one in the previous case study. This makes sense since architecture eleven

had the lowest cost per image in the previous study, implying that it is the most cost-effec-

tive mission in terms of productivity. Therefore, it is not surprising that when the budget

is forced to be the same for all architectures, the architecture that was the most cost effec-

tive is now the most productive.

1800

1500

1400

1300

1200

1100

loo0

800

800
1 2 3 4 5 6 7 8 9 1 0 1 1

kcMt.cluN

a.

0.05 , I

0.9
0.86
0.8

0.75
0.7

0.65
0.6

0.55
0.5

1 2 3 4 5 8 7 6 8 1 0 1 1

Arehlt.c*m

b.

1
0.05
0.9

0.66
0.8

0.75
0.7

0.86
0.6

0.56
0.5

I 2 3 4 5 6 7 8 9 1 0 1 1

kchIW&N

C.

Figure 4.10 Final results for case study of combinations of four total spacecraft with a total system bud-
get of $280M. a) Expected total number of images for each architecture. b) Reliability for
each architecture. c) “Score” metrics for each architecture.

Figure 4.11 shows the “score” metric for each architecture in the four spacecraft case

study both before and after architectures four, six, and nine were re-run. In a similar sense

as with the six spacecraft case study, while the individual “scores” of the architectures that

Chapter Summary 101

were re-run change slightly, the overall pattern and trends remain consistent. Note that in

this case, however, since none of the architectures which were re-run were the best in any

metric category, the “scores” of those architectures that were not re-run remain constant.

Both Figure 4.6 and Figure 4.11 show that while the simulated annealing algorithm may

not always find the true global optimum, it does find a solution which is “good enough” to

tell the patterns of which architectures are preferable over other architectures.

1
0.95
0.9

0.85

8 0.75
(D 0.7

0.65
0.6
0.55
0.5

3 0.8

1 2 3 4 5 6 7 8 9 1 0 1 1

Archibcturs

a Reused scwes
a hitial scores

Figure 4.11 “Score” metrics for architectures in the case study of combinations of four
total spacecraft with a total system budget of $280M both before and after
architectures four, six, and nine were re-run.

4.3 Chapter Summary

This chapter has introduced a new metric designed to compare the total performance of

different architectwes. This metric has been tested, and results have been shown using

two different case studies. It is worth noting that the architecture with the best total per-

formance is not necessarily the architecture with the best performance in any of the three

individual life-cycle metrics. This total performance metric was also tested, with the

results shown in this chapter, for architectures which include extra money spent to

improve component reliabilities. Through these case studies, trends were identified which

give general rules of thumb on how to divide money among different components to

improve individual reliabilities when trying to improve the overall system reliability as

much as possible.

102 ARCHITECTURE COMPARISON BASED ON TOTAL PERFORMANCE

Chapter 5

SYSTEM OPTIMIZATION AND
RESULTS

Once the tools are in place to analyze the productivity, reliability, and cost of individual

architectures, the system with the “best” combination of these life cycle metrics can be

identified. In Chapter 4 this process was described for comparing different user-defined

architectures. This is an important process late in the conceptual design phase, when the

designers have narrowed down the choices of architectures. This narrowing down process

may have occurred any number of ways, such as only exploring designs which have

aspects of heritage to them, or exploring the entire design space and deciding to look at

only the most promising options. While the tools discussed in Chapter 4 can be used for

this design space exploration by allowing one-at-a-time or orthogonal array design of

experiments analyses, if the design space has a large number of degrees of freedom, each

with many possible values, these types of analyses and experiments can be very lengthy

l
I

and time consuming. Therefore, it is important to have tools that can effectively search

the entire design space and provide insight into best areas of this design space and families

of architectures to explore in further detail. ,
This chapter will explore three tools that are useful for design space exploration. Two

heuristic optimization algorithms will be discussed - simulated annealing and genetic

algorithms. Each of these algorithms will be introduced and applied to the SSI test case,

with the results shown. Additionally, a sensitivity analysis tool will be discussed and

applied to the results of the optimization techniques.

103

104 SYSTEM OPTIMIZATION AND RESULTS

5.1 Heuristic Algorithms

Heuristic algorithms use rules of thumb to provide an intelligent, guided search through

the entire design space. Heuristic algorithms differ from gradient, or analytic, optimiza-

tion algorithms because there is no guarantee that the solution a heuristic algorithm has

converged upon is the global, or even local, optimum. The solution reported by a heuristic

algorithm is simply the “best” solution, in terms of the objective function, that the algo-

rithm has found during its search of the design space. While analytic optimization tech-

niques can guarantee a solution is at least a local optimum, these techniques often get

stuck in these local optima and never find the global optimum. The design space for the

problem of finding the optimal architecture, in terms of number of each type of spacecraft

and amount of money spent to improve the reliability of each component, is very jagged.

The number of each type of spacecraft is required to be an integer value and the set of fea-

sible solutions is not necessarily continuous. Due to this jagged design space, the proba-

bility of any analytic optimization algorithm getting stuck in a local optimum is very high.

In addition, heuristic algorithms have no constraints on linearity and do not require a con-

vex design space [Jilla, 20021. Finally, the goal of the optimization tools under develop-

ment for this research is to find families of architectures, and trends in the best

architectures, and not necessarily to find the architecture that is the global optimum in

terms of the objective function. For instance, it would be very useful for a tool to provide

two different architectures, each which have high productivity, low cost, and high reliabil-

ity, but which lie in very different areas of the design space. These two architectures could

then be compared in terms of other design measures which are more difficult to quantify,

such as risk, political impact, and heritage.

Due to the ability to not get trapped in local optima, and the ability to find more than one

“good” solution, heuristic algorithms were chosen to explore the design space and opti-

mize the architecture in terms of the total productivity. Architectures are now defined as

the number of each type of spacecraft and the money spent to improve the reliability of

Heuristic Algorithms 105

each component. Two different heuristic algorithms were implemented: simulated anneal-

ing and genetic algorithms.

5.1.1 Simulated Anneahg

The simulated annealing methodology is a heuristic optimization technique which applies

statistical mechanics to optimization. This method was first introduced in 1983 by Kirk-

patrick, Gelatt, and Vecchi [Kirkpatrick, Gelatt, and Vecchi, 19831. Specifically, simu-

lated annealing is an optimization method which mimics the cooling process of materials

to a state of minimum energy. During the process of cooling from a liquid to a solid state,

the molecules of a material will move around in a pseudo-random fashion. Each arrange-

ment of molecules has a given energy. Lower energy states are preferred to higher energy

states, and therefore the molecules continue to rearrange until a state of lowest energy is

reached. If a material cools, or anneals, too quickly, it will solidify before the molecules

have had time to arrange into this lowest energy state, and the material will be left in a

sub-optimal energy state. If the material cools slow enough however, the molecules in the

material will arrange in the correct order to form the lowest possible energy state. As the

temperature is lowered, more of the material solidifies, and the molecules move around

and rearrange less frequently, until the material is completely solidified and the molecules

positions are locked in place.

This same process can be used to optimize a system in terms of a given objective function.

The lowest energy state is equivalent to the optimal value of the objective function and the

movement of molecules is equivalent to the evaluation of different neighboring design

vectors. lbo design vectors are considered neighbors if all but a given number of design

variables are the same. The number of design variables allowed to vary for two vectors to

still be considered neighbors is called the degrees of freedom of the optimization algo-

rithm. The concept of neighboring design vectors is illustrated in Figure 5.1, where the

three lower design vectors are all neighbors to the first design vector for two degrees of

106 SYSTEM OPTIMIZATION AND RESULTS

freedom. For one degree of freedom however, only the second design vector is a neighbor

to the first design vector.

[abc d e fJ

Figure 5.1 Example of neighboring design vectors. The 3 lower design vectors are
all neighbors to the top design vector with 2 degrees of freedom. Only the
first and second design vectors are neighbors however if the degrees of
freedom is set to 1.

As molecules are searching for the lowest energy state configuration when a material is

cooling, they may accidently move to new configurations which are actually higher

energy states than the original configuration. This is very likely to happen at the begin-

ning of the cooling process when molecule movement is easier. As the material cools and

the movement of molecules becomes more difficult, the probability of molecules rear-

ranging themselves into a higher energy state decreases significantly. This process is

mimicked in the optimization algorithm by what is known as the Metropolis Step [Metrop-

olis et al., 19533. The metropolis step is used to determine whether or not the system

should move into a state with a worse objective function. Once a given design vector has

been evaluated, a neighbor to that design vector is evaluated. If the neighbor design vec-

tor has a more optimal objective function value than the original design vector then the

neighbor becomes the new starting point. A new neighbor is defined and the process is

repeated. If the neighbor design vector has a less optimal objective function value than the

original design vector, this neighbor may still become the new starting point with a proba-

bility determined by the Boltzman Factor. This factor takes into account both the temper-

ature of the system, or how long the algorithm has been running, and the difference

Heuristic Algorithms 107

between the two objective functions, and is defined in Equation 5.1 for a “larger is better”

objective function. If the system temperature is low, implying that the algorithm is near

completion, the system is less likely to move to a less optimal state. In addition, if the

neighboring design vector is significantly worse than the original design vector in terms of

the objective function, the system is also less likely to move to the neighboring state.

A = J(x ,) -J (x ,)
A
T

--
BoltzmanFactor = e

(5.1)

In Equation 5.1, J(x) is the objective function of design vector x, xo is the initial design

vector, xn is the neighboring design vector, and Tis the system temperature.

The Boltzman Factor and Metropolis Step keep the simulated annealing algorithm from

getting trapped in local optima. They allow the algorithm to search in a worse direction

every once in a while in order to be sure that this direction will not prove to be the better

direction eventually. If the design space is thought of as peaks and valleys, representing

local maxima and minima of the objective function, this step basically gives the algorithm

a chance to look around the side of the peak or valley it is currently climbing to see if there

is a bigger peak or lower valley elsewhere in the design space.

Before implementing a simulated annealing algorithm, several processes and variables

need to be defined. First, the initial temperatm needs to be defined such that the initial

Boltzman Factor, or probability of moving to a worse design vector, is acceptable. This

temperature depends both on what the user defines as an acceptable probability of moving

to a worse design vector and on the potential, or average, difference between two neigh-

boring design vector’s objective function values. Next, the cooling schedule for the algo-

rithm needs to be defined. This schedule sets how the temperature is changed in every

iteration. The temperature should decrease as the algorithm proceeds, however the rate

and method (exponential decrease, subtraction, constant factor, etc.) of this decrease can

be different for every problem. A termination criteria can then be set. This criteria is usu-

10s SYSTEM OPTIMIZATION AND RESULTS

ally either when the temperature reaches a given value near zero, or when a given number

of iterations have been completed. The steps involved in setting up and implementing a

simulated annealing optimization algorithm are shown below (for a “larger is better”

objective function) [Jilla, 20021.

1. Define initial temperature of the system.

2. Define the cooling schedule.

3. Define the termination criteria (temperature equals zero, or number of itera-
tions reached)

4. Run the algorithm

4.1 Evaluate objective function at current location, J(x,).

4.2 Find neighboring design vector (within designated degrees of freedom).

4.3 Evaluate objective function at neighboring location, J(x,).

4.4 If J(x,) > J(x,), make x, new current location.

4.5 If J(x,) e J(x,), make x, new current location with probability e(-m,
where A = J(x,)-J(x,) and T = system temperature.

4.6 Reduce temperature using cooling schedule.

4.7 Repeat until termination criteria is met.

SSI Design Implementation

A simulated annealing algorithm is implemented with a Matlab script called

“sim-anneaZing.m.” The first step in implementing a simulated annealing algorithm to

find the “optimal” architecture for a separated spacecraft interferometry system is to

define the objective function. The objective function is shown in Equation 5.2 below, and

is very similar to the “score” metric described in Section 4.1 on page 76. In the case of the

objective function however, the entire design space is being sampled and the objective

function needs to be evaluated before all other architectures have been evaluated. There-

fore, in the equation for the objective function the maximum of each metric is replaced by

a user defined average value, found from experience from running other cases. Equation

5.3 shows an example objective function with typical values for the user defined inputs.

Heuristic Algorithms 109

(5.2)
Reliability(x) + Ptoductivity(x) + Avg CostPerImage

RAvgReliability ‘AvgProductivity CCostPerZmage(x)
J(x) = w

(5.3)
0.2 + 0.4 ReZiabiZity(x) + o.3 Productivity(x)

1250 CostPerZmage(x)
J(x) = 0.3

0.8

In Equations 5.2 and 5.3, J(x), ReliabiZity(x), Pmdutivity(x)* and CostPerZmage(x) are the

objective function, reliability, productivity, and cost per image respectively, evaluated at

design vector x. In addition, wR, wp and wc are the weighting factors applied to reliability,

productivity, and cost, and AvgReliubilify, AvgPmductivity, and AvgCostPerZmage are the

user defined average, or normal, values for the reliability, productivity, and cost per image

respectively.

The next step in implementing a simulated annealing algorithm is to define both an initial

temperature and a cooling schedule. The initial system temperature is set based on a user-

defined input of a reasonable estimate of the difference between two neighboring architec-

ture’s objective functions. This value would again need to come from the experience of

running other cases. The initial tempemture is then set such that the initial probability of

the algorithm defining a “worse” architecture as the new initial architecture is approxi-

mately 0.75. This can be seen in Equation 5.4, where AguSs is the estimate of the differ-

ence between two neighboring vectors’ objective functions and To is the initial system

temperature.

The cooling schedule is again user controlled. The user defines both the total number of

iterations and the number of steps down in temperature desired. In order to get a low

probability of jumping to a worse architecture at the end of the algorithm, the temperature

should approach zero. Therefore the final temperature is set to be a value near zero, 0.001.

The cooling schedule is set such that the temperature is reduced by the same factor in

every step. This factor is found by using the number of steps required to lower the temper-

110 SYSTEM OPTIMIZATION AND RESULTS

ature and the initial and final temperatures. In addition, the algorithm also calculates how

many iterations should be run at each temperature step. This process is shown in Equa-

tions 5.5 through 5.7.

iterations
steps RunsPerStep = (5.5)

Tn = Freduce Tn - 1 (5.7)

In Equations 5.5 through 5.7, iterations is the number of iterations, steps is the number of

steps down in temperature, To is the initial system temperature, Freduce is the factor that the

temperature is reduced by each step down in temperature, and Tn is the temperature at step

n.

As the algorithm runs, the data from each analysis, including the objective function, tem-

perature, and design vector, is stored in a matrix called data. The same data, but only for

the design vectors which are redefined as the current design vector, is stored in a matrix

called dutuqroceed. The final “optimal” design vector is the found by finding the maxi-

mum objective function stored in the matrix data.

It is clear that the solution returned by this algorithm is dependant upon several parame-

ters. These parameters include the number of iterations, the number of steps down in tem-

perature, and the initial guess at the difference in the objective function of two

neighboring design vectors. Therefore, it is a good idea to “tune” the algorithm before it is

used to find an “optimal” solution. This is accomplished by running the algorithm multi-

ple times, with a small number of iterations each time, and varying each of the parameters

for each run. Each parameter should be tested at a low, nominal, and high level. The final

“optimal” objective function value for each setting of each parameter can then be com-

pared to find the best setting of each parameter for the particular total system budget being

Heuristic Algorithms 111

run. Due to the stochastic nature of the algorithm, if time permits, it is a good idea to run

each parameter at each setting multiple times and use an average of the results to compare

parameter settings. In general, the number of iterations should be as high as possible, and

therefore this parameter does not generally need to be tuned. Instead, a small number of

iterations is used for the tuning process in order to make the process run quicker. The

number of steps down in temperature can be adjusted to the number of iterations (i.e. try

one step down every five iterations, every two iterations, and every iteration, instead of

every 200,500, and loo0 iterations). These “optimum” settings for the parameters may

change with the total system budget, and therefore this process of tuning parameters

should be repeated before running a larger optimizing case for every major change in bud-

get.

Due to the nature of design work and design problems, the “optimal” solution is not

always what the user is the most interested in. Often times, the user is looking for as many

solutions as hdshe can find that are “good”, and not necessarily one “best” solution. This

allows the user to then identify trends among “good” solutions as well as to further exam-

ine these solutions in terms of other parameters not captured in this analysis, such as risk,

political effect, and heritage. For this reason, two additional matrices are returned from

the simulated annealing code, “sim-unneding.m.” The first matrix, good-objfiurc,

returns all design vectors that have objective functions equal to W% or higher of the max-

imum objective function found. Since the differences in the objective function of these

architectures are by definition very small, these architectures tend to vary only by the
I amount of money spent on each component to improve reliabilities, and not by the number

of each type of spacecraft. Therefore, a second matrix, called good-objfiznc2, is also

returned. This matrix contains all the architectures which have a different number of at

least one of the types of spacecraft from the “optimal” solution, but still have an objective

function equal to 97.5% or higher of the “optimal” objective function. This matrix allows

the designer to more completely explore the design space surrounding several unique,

‘‘good” architectures, instead of just one “best” architecture. This is particularly useful in

early conceptual design stages when it is beneficial to identify multiple architectures to

I
‘
I

112 SYSTEM OPTIMIZATION AND RESULTS

carry forward into the next phase of the design process, and not just a single “optimal”

point design .

Results

A case study was carried out using the simulated annealing algorithm described above.

For this case study, the total system budget was set at $360M. The allowable bounds for

each design variable were set as follows: zero to five dual functioning spacecraft in incre-

ments of one, zero to six combining spacecraft in increments of one, zero to nine collect-

ing spacecraft in increments of one, and zero to one hundred million dollars spent on

improving each of the component reliabilities (combining optics, collecting optics, or bus)

in increments of five million. The bounds for the number of each type of spacecraft were

set by estimating the highest possible number of each type of spacecraft that could be

bought with the given budget. For example, the theoretical first unit cost of a dual func-

tioning spacecraft is currently set at $70M. Since an architecture with solely dual func-

tioning spacecraft is allowable, as long as there are at least three spacecraft, the maximum

bound for dual functioning spacecraft is found by dividing the budget by the approximate

cost of each spacecraft. This turns out to be slightly over five, implying that no more than

five dual functioning spacecraft would be possible per architecture without breaking the

budget constraint. The theoretical first unit costs for the combining and collecting space-

craft are currently set at $45M and $35M respectively. Since at least two collecting and

one combining spacecraft are required for a functioning system, the maximum number of

combining spacecraft is $360M minus two times $35M divided by $45M, which works

out to slightly over six. Finally, the maximum number of collecting spacecraft is $360M

minus $45M divided by $35M, which works out to exactly nine.

The first step in implementing the simulated annealing algorithm is to tune to the algo-

rithm to find the most appropriate values for the initial guess at the difference between two

neighbors’ objective functions (deltujuess) and the number of steps down in temperature

(steps). This was accomplished by testing each of these parameters at four different lev-

els. For each test, the simulated annealing algorithm was terminated at 50 iterations. Each

Heuristic Algorithms 113

test was repeated ten times to account for effects from the stochastic nature of the algo-

rithm. A summary of the results can be seen in Table 5.1 and Figure 5.2.

TABLE 5.1 Simulated annealing algorithm tuning data.

“77

I

t 145
0.1 0 2 0 3 0 4 O S 0 6

D o h 6r.r

a

1.172 ’ 17‘ R

I
0 30 20 30 10 so 60

SL...

b.
Figure53 Simulated annealing tuning data for a) Initial guess at difference in objective function

between two neighbors and b) number of steps down in temperature.

This tuning data shows a maximum in the objective function at an initial guess of the dif-

ference between two neighbor’s objective functions of 0.1 and ten steps down in tempera-

ture, and these values were therefore used for the future runs of the simulated annealing

algorithm for this total system budget ($360). It should be noted that while ten steps down

114 SYSTEM OPTIMIZATION AND RESULTS

in temperature was the maximum value, this was with only 50 total iterations. Therefore,

future runs were set to one step down in temperature for every five iterations.

The results of this case study with 1,500 iterations can be seen in Figure 5.3 and Tables 5.2

and 5.3. Figure 5.3 shows the objective function value of the design vector that the algo-

rithm chose as the new “current solution” for each iteration. Note that in the first itera-

tions the algorithm chose a “worst” solution relatively frequently. This is due to the higher

temperature at these iterations affecting the Boltzman factor. As the iteration number

increases, and the system “cools down”, this jump to a worse solution trails off, and the

algorithm converges on a solution.

Iteration

Figure 53 Simulated annealing convergence data

Table 5.2 shows the solution that the simulated annealing algorithm converged to. Note

that no duals were used, and that more money was spent on improving the reliability of the

combining optics than on improving the reliability of the collecting optics, which is con-

sistent with the rules of thumb found in Section 4.2.2 on page 86 for how to spend extra

money on improving components. Dual functioning spacecraft cost more than combining

or collecting spacecraft alone, therefore it is possible that using more of the simpler,

Heuristic Algorithms 115
~ ~

cheaper spacecraft is more effective than fewer of the more complex, more expensive

spacecraft. This explains the zero dual functioning spacecraft solution.

TABLE 5.2 Simulated Annealing Results

“Best” Architecture
0 duals

2 combiners
5 collectors

$1OM on combining optics
$5M on collecting optics

$25M on bus
Objective Function = 1.2937

Finally, Table 5.3 shows the other ‘‘good” architectures returned uy the algoIlulm. The

first architecture in the table is the “best” architecture, followed by a second architecture,

which has a different combination of spacecraft from the “optimal” solution but still has

an objective function within 97.5% of the maximum objective function. These were the

only two combinations of spacecraft found that came within 97.5% of the maximum

objective function. This is most likely due in part to the algorithm’s n a t m of following

one path through the design space, leading to less possibility of finding completely sepa-

rate architectures with equal, or near equal, performance. In fact, the only other architec-

ture found with a different number of spacecraft that performed near the “best”

architecture is still very similar to the “best” architecture in that no dual functioning space-

craft are used and instead two combining spacecraft provide redundancy for the combin-

ing optics. The last four architectures listed in Table 5.3 have objective function values

within 99% of the “best” architecture, but have the same core combination of spacecraft

and simply differ from the “best” architecture by the division of extra money to improve

component reliabilities. They are still useful to report however, both to see what combina-

tions the algorithm has tried that have come out worse than the “best” architecture, and for

future exploration of the design space. It should be noted that the last four rows of

116 SYSTEM OPTIMIZATION AND RESULTS

1.2892 0 2 5 10

1.2890 0 2 5 15

Table 5.3 are simply a sampling of the architectures returned that fell into this category

since 30 different architectures were returned.

0 30
5 40

TABLE 5.3 Good architectures returned from simulated annealing. The first two are within 97.5% of the
“best” architecture’s objective function and vary by the number of each type of spacecraft (the first
architecture listed is the “best” architecture), while the last 4 are within 99% of the “best” architecture’s

5.1.2 Genetic Algorithms

Genetic algorithms are a set of heuristic algorithms based on Darwin’s principle of sur-

vival of the fittest first proposed by J. Holland of the University of Michigan in 1975 [Hol-

land, 19751. The principle of survival of the fittest says that of a generation of varied

individuals, only those who have the traits necessary to survive will live long enough to

mate and have offspring. In this way, the individuals with traits that are not advantageous

to survival will be killed off before reproducing, and these traits will essentially vanish. In

addition, the more fit or better suited an individual is to survival, the more other individu-

als will want to mate with it, and it’s traits will be spread farther. Therefore, after several

generations of evolution, the later generations in this society will only contain the advanta-

geous traits and the individuals in these later generations should be stronger and more fit

for survival than any of their ancestors in the initial population.

Heuristic Algorithms 117

This concept of survival of the fittest is translated to an optimization algorithm by the

analogy that individuals are particular design vectors and the fitness of a given individual

is the value of the objective function for that design vector. A random initial set, or popu-

lation, of design vectors is chosen to begin the algorithm. Each design vector in this pop-

ulation is then encoded to form a “gene” for that design vector. This step is needed in

order to model mating and mutations of individuals. There are several ways to encode

design vectors to “genes”, including binary and float encoding. In these types of encoding

each design variable is changed to a binary or float number representation, respectively. If

the design variables are continuous numerical values this encoding process is simple and

can be just the variable value itself. If the design variables are noncontinuous or not

numeric this encoding process is more complicated.

Once the design vectors are encoded as “genes” they can mate and mutate to form a new

population. The probability of an individual design vector being able to “mate” with

another design vector is determined by it’s fitness, or objective function. The more opti-

mal the objective function, the higher the probability that the individual will mate. There

am several ways to choose individuals to mate, including ranking schemes, fitness value

schemes, and roulette wheel selection. Ranking schemes involve ranking the entire popu-

lation in order from the most fit to the least fit. An individual’s probability of mating is

then equal to the inverse of the ranking. In fitness value schemes, the probability of an

individual mating is equal to the value of the individual’s fitness function over the sum of

the values of the fitness functions for all individuals in the population. In roulette wheel

selection, an individual is given a unique range of values, with the range depending on the

fitness of the individual. The more fit the individual, the larger the range of values. Next,

a random number is generated that must fall into one of the ranges of values of the individ-

uals. If the random number falls into a given individual’s range of values, then that indi-

vidual is chosen to mate [deWeck, 20021. The roulette wheel scheme can be combined

with fitness value schemes if the probability of choosing the individual, or the range of

values of that individual, is calculated using a fitness value scheme. With tournament

selection, the algorithm selects a given number of individuals, with replacement, ran-

118 SYSTEM OPTIMIZATION AND RESULTS

domly. From this set of individuals, the individual with the best fitness function is chosen

to mate. This process is repeated, with a new set of randomly selected individuals, until

the correct number of “parents” are chosen [Houck, Joines, and Kay, 19951.

Once two individuals are chosen to mate, their genes, or encoded design vectors, must be

combined to create “children.” This process is called crossover. Crossover can produce

anywhere from one to many children from two parents. In single point crossover, a ran-

dom point along the genes, or encoded design vectors, is chosen. All the encoded material

from one side of this point from one parent is put together with all the encoded material

from the other side of the other parent to create one encoded gene. In path relinking, each

child is a neighbor of either a parent or another child. For example, child one is a neighbor

to parent one, child two is a neighbor to child one, child three is a neighbor to child two,

and so on to child n, who is a neighbor to parent two. W o design vectors are considered

neighbors if all but a given number of design variables are the same, as shown in

Figure 5.1. Whichever way crossover is achieved, a new population is created using the

information from the initial population.

Once a new population is created, a process known as mutation needs to occur. Mutation

allows for stochastic processes to be included in the algorithm and restore diversity to the

population. Mutation accounts for a small probability that any piece of an encoded design

vector is changed after a child is created. For example, in binary encoding, the mutation

probability, or rate, would be the probability that any bit in any design vector is changed

from a zero to a one after a child is created. This mutation is necessary to keep the popu-

lations from becoming static too early, and increases the probability of exploring the entire

design space.

Once a new generation is created and then mutated, the process repeats itself, with the

analysis of all individuals in the new generation. This process is continued until a termi-

nation criteria is met. The termination criteria can be a tolerance on the diversity of a pop-

ulation, or a set number of generations completed. A set number of generations is a very

Heuristic Algorithms 119

Natural selection
Individuals

common termination criteria for genetic algorithms. The analogies between natural selec-

tion and genetic algorithms are summarized in Table 5.4, and the steps involved in imple-

menting a genetic algorithm are given below [deWeck, 20023.

Genetic algorithms
Design vectors

1. Define objective, or fitness, function.

2. Define mating selection criteria and crossover rate.

3. Define mutation rate.

4. Initialize algorithm.

4.1 Initialize first random population.

4.2 Evaluate fitness of all individuals.

4.3 Select individuals to mate.

4.4 Create new generation.

4.5 Mutate new generation.

4.6 Repeat from Step 4.2 until termination criteria is met.

Genes
Generations

Encoded design vectors
Groups of design vectors

~

Fitness
Mating

I Population size I Number of design vectors per generation I
~~~ 

Objective function 
Combining design vectors (crossover) 

Children 

Mutation 

New design vectors (combinations of old 
design vectors) 

Random changes in encoded design vector 
~ 

S I  Implementation 

Genetic algorithms were implemented for the separated spacecraft interferometry system 

design problem by using the publicly accessible Matlab toolbox GAOT. The same objec- 

tive function that was used for the simulated annealing algorithm was also used as the 

genetic algorithm fitness function. Please see Equations 5.2 and 5.3 for this fitness func- 



120 SYSTEM OPTIMIZATION AND RESULTS 

tion. The initial population is chosen randomly from the set of possible individuals 

defined by the user given bounds on each design variable. This population was chosen 

using the toolbox function “initiulizegam.” The first three design variables contain inte- 

ger constraints (one cannot buy half a spacecraft) and therefore, to accommodate this con- 

straint, a modified binary scheme was chosen for the encoding of the design vectors to 

“genes.” Several modifications were necessary in order to get the binary encoding aspects 

of toolbox algorithm working correctly. Additional modifications were made to this 

binary encoding to ensure the integer constraints needed for this problem were met. Spe- 

cifically, a line was added which rounded the float number to the nearest integer after 

changing from binary to float formats. Once these modifications were made, they were 

tested by running several iterations through a function which chose a random integer 

design vector, encoded it using the binary encoding scheme, decoded it, and checked the 

original vector against the new decoded vector. These tests led to confidence in the modi- 

fied encoding scheme. The full list of modifications to the GAOT toolbox can be seen in 

AppendixB. It should be noted that float encoding schemes are also included in the 

GAOT toolbox. 

The GAOT toolbox offers three different selection criteria functions: roulette wheel, nor- 

malized geometric ranking, and tournament. The roulette wheel selection criteria is 

implemented using a fitness value scheme to find the probability of choosing each individ- 

ual. The normalized geometric ranking scheme is a modified ranking scheme. Please see 

Houck, Joines, and Kay for more information on this scheme [Houck, Joines, and Kay, 

19951. For this research, the tournament selection scheme was used. Please see above for 

a description of the tournament scheme. Once a new population is chosen, crossover, or 

mating, and mutation occur at a user-defined rate, or probability. Several options are 

available for schemes of how to accomplish crossover and mutation. For this research, the 

default values of simple, or single point, crossover, and binary mutation, in which each bit 

in each individual is flipped with a given user-defined probability, or mutation rate, were 

chosen [Houck, Joines, and Kay, 19951. 



Heuristic Algorithms 121 

Once again, since the true “optimal” solution is not necessarily of interest to the designer 

in this problem, but rather a list of “good” solutions is, all the data from all analyses exe- 

cuted during a genetic algorithm scheme are saved in a matrix called data. This data can 

then be examined to find all solutions which produce objective function values within 

given ranges of the “optimal” solution. Solutions with objective function values within 

99% of the “optimal” solution are reported, along with solutions within 97.5% of the 

“optimal” objective function value, but with a restriction that the number of at least one 

type of spacecraft must be different from the “optimal” solution. 

Results 

The GAOT toolbox was tested on a case study for a system with a total budget of $360M. 

This is the same case study that was carried out with the simulated annealing tool. The 

case study was carried out using 60 generations with a population of 50 individuals in 

each generation. Note that this leads to approximately 3000 analyses‘required to complete 

the study, which is equal to the approximate number of analyses required with the simu- 

lated annealing algorithm (1500 iterations, 2 analyses for each iteration). The design vari- 

ables were all restricted to integer values with the number of dual functioning spacecraft 

ranging from zero to five, the number of combining spacecraft ranging from zero to six, 

the number of collecting spacecraft ranging from zero to twelve, and the money spent on 

improving each component’s reliability ranging from zero to one-hundred. Please see 

Section 5.1.1 for the rationale behind these bounds. 

The first step in implementing a genetic algorithm optimization scheme is to tune the algo- 

rithm parameters: crossover and mutation rates. This was accomplished by allowing the 

algorithm to run with fewer analyses at multiple levels for each parameter. Each test was 

repeated ten times and the average value of the objective function for the ten runs was 

used to compare the parameter level settings. The default crossover rate is 0.6 and was 

tested at 0.4,0.6, and 0.8. The default mutation rate is 0.05 and was tested at 0.01,0.05, 

and 0.1. This test led to a maximum objective function when the mutation rate was set at 

0.1. Therefore, tests were completed for mutation rates at 0.15 through 0.25 as well, in 



122 SYSTEM OPTIMIZATION AND RESULTS 

search of a maximum. The results for the tuning of the crossover rate and mutation rate 

are shown in Figure 5.4. 

: 1 -  5 0.95 - 
0 0.9 .' 
c 

I; 0.85- 
U 
g! 0.8 - 
3 0.75 - 
8 0.7-  

/ 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 

! 0.6 

Crossover Rate 

f 1.4 

1.2 
- 
0 

I? 0.8 

- s 1  
3 H OA 

0.4 

I /  I 

0 0.05 0.1 0.15 0.2 0.25 0.3 

Mutation Rate 

a. b. 

Figure 5.4 Tuning data for genetic algorithms optimization scheme for a) crossover rate and b) muta- 
tion rate. 

While the average objective function is continuously increasing with the mutation rate, it 

is dangerous to allow this parameter to be too high. The increased objective function for 

higher mutation rates may have been a response to the lower number of individuals per 

generation, leading to a higher probability of finding no feasible solutions in any given 

generation. With a higher mutation rate, the search is more random and the algorithm has 

a higher probability of testing entirely new individuals each generation, leading to a higher 

probability of finding at least one feasible individual in the short tuning tests. This prob- 

lem would be avoided with a larger population size per generation however, and the higher 

mutation rate would simply make the search more of a random search than a guided search 

through the design space. Therefore it was decided to run the full genetic algorithm opti- 

mization scheme at mutation rates of 0.05, 0.1, and 0.15. The default value of 0.6 for the 

crossover rate produced the maximum objective function value, and was therefore used 

throughout the rest of the tests discussed here. 

The results for the genetic algorithm optimization scheme for a total system budget of 

$360M with a mutation rate of 0.1 are shown in Tables 5.5 and 5.6 and Figure55 



Heuristic Algorithms 123 

Table 5.5 shows the “optimal” solution reported by the genetic algorithm. Comparing 

Table 5.5 and Table 5.2 on page 115 show that the two solutions, found with genetic algo- 

rithms and simulated annealing respectively, are very similar. Both solutions have two 

combiners, five collectors, and no dual functioning spacecraft. In addition, both solutions 

spend more money on improving combining optics than on improving collecting optics, 

which is also supported by the rules of thumb developed in Section 4.2.2, since this archi- 

tecture has three more spacecraft capable of collecting light than capable of combining 

light. Both solutions also spend $25M on improving the reliability of the bus. The genetic 

algorithm obtains a slightly better solution by spending more money on improving both 

the combining and collecting optics’ reliabilities than the simulated annealing solution 

does. The similarity in the two solutions, however, provides greater confidence in both. 

TABLE 5 5  Genetic algorithm results (mutation rate = 0.1) 

“Best” Architecture 
0 duals 

2 combiners 
5 collfxtors 

$12M on combining optics 
$9M on collecting optics 

$25M on bus 
Objective Function = 1.2949 

Table 5.6 shows the other architectures returned by the genetic algorithm that are close to 

the “optimal” solution. The first row in Table 5.6 is the “optimal” solution reported. The 

following rows are the other architectures found which have an objective function value 

within 97.5% of the “optimal” solution while still having a different number of at least one 

type of spacecraft. Note that seven of these additional architectures were found with the 

genetic algorithm, compared to one additional architecture found with simulated anneal- 

ing. While not shown in Table 5.6, the genetic algorithm optimization scheme also 

returned over 240 additional solutions that have objective function values within 99% of 



124 SYSTEM OPTIMIZATION AND RESULTS 

Combs Cols 
2 5 
1 4 

the “optimal” solution, but only vary from the “optimal” solution by the division of money 

spent to improve reliabilities. In many cases and stages of design, solutions such as the 

ones reported in this case study are often much more valuable to the designer than the one 

true “optimal” solution. For these cases, it may prove beneficial to use the genetic algo- 

rithm optimization scheme since it returned seven times more solutions in this category 

than the simulated annealing algorithm. The full listing of all solutions returned by the 

algorithm can be seen in Appendix C. 

$ spent $ spent 
on comb. on col. $ spent 

optics optics on bus 

12 9 25 
12 13 30 

($MI ($MI ($MI 

TABLE 5.6 All 
architectures listed are within 97.5% of the “best” architecture’s objective function and vary by the number 
of each type of spacecraft (the first architecture listed is the “best” architecture). The algorithm also returned 
over 240 architectures which are not shown here, with objective functions within 99% of the “best” 
architecture’s objective function but only vary from the “optimal” solution by the money spent on different 
components. 

Good architectures returned from genetic algorithms with mutation rate = 0.1. 

3 
0 

Objective 

5 3 3 25 
4 5 17 29 

1.2868 
1.2723 
1.2702 

4 
6 

I 1.2652 I 2 

9 9 14 
1 3 19 1.2632 I 0 

1 1 3  1 1 2 1 2 1 1 3 3  

1 
2 
2 

Figure 5.5 shows the convergence history for the genetic algorithm solution with a muta- 

tion rate of 0.1. In Figure 5.5a, the blue points are the maximum objective function found 

in that generation while the red points are the mean objective function for the generation. 

The mean objective function is generally less than half that of the maximum objective 

function found for each generation. This is due to the jagged design space of the problem. 

If either the budget constraint or the operating constraint (at least two combining and one 

collecting spacecraft) is broken, the system is automatically assigned an objective function 



Heuristic Algorithms 125 

value of zero. Therefore, a very slight change in one design variable will make the objec- 

tive function of a design vector go from optimal, or near optimal, to zero. In addition, the 

upper bound of each design variable is set for the maximum possible while still meeting 

all requirements. This leads to a large number of combinations of design variable values 

that will be infeasible designs. This implies that generations will in general have some 

design vectors which are feasible and many design vectors which axe infeasible. If only 

half the design vectors are infeasible and if all the other design vectors are optimal, the 

mean objective function value would be one half the maximum. Since in general more 

than half the solutions of a generation will be infeasible, and the majority of those that are 

feasible will have objective function values less than the optimal value, the mean value of 

the objective function for each generation is expected to be less than one half the maxi- 

mum value. Figure 5.5b shows a closer view of the maximum objective function value for 

each generation. Notice that the maximum objective function is in general increasing as 

the generations increase, but is also converging to a final solution. 

I 3 f 1.2 I" 7 
I I 

Y' 0.6 

f ::: 

a 

m 1.285 

1.27 
1.285 
1.28 

3 1.2554 I 

b. 
Figure55 Genetic algorithms (mutation rate = 0.1) convergence history - a) maximum and mean 

objective function for each generation, b) maximum objective function for each generation. 

One of the most appealing aspects of using genetic algorithms for design problems is the 

ability to search multiple areas of the design space at once. This in general leads to a more 

thorough exploration of the entire design space than other optimization algorithms offer. 

Figure 5.6 shows two different views of a portion of the design space and the extent to 

which it was explored by the genetic algorithm utilized in this case study. Each blue dot in 



126 SYSTEM OPTIMIZATION AND RESULTS 

Figure 5.6 is a different architecture, in terms of only the number of each type of space- 

craft, which was analyzed at least once by the algorithm, and the red dot is the solution 

reported “optimal”. While this only shows the design space covered by the first three 

design variables, due to the inability to visualize the full 6 degree of freedom design space, 

it is clear that the genetic algorithm explores almost the entire space. This is a very prom- 

ising feature of using genetic algorithms for future space system conceptual design prob- 

lems. 

. . .  .:. . . . . .  .................... .!. . . . . . . .  ’0, . . . . .  ,__I ........ 

6, ........... j .... 
4, :. , 

.... .... . . . .  ... . .  ................ .................. 8, . . . .  . . . . . . .  
. .  . .  
: :. 

. . . . . . . . . . . . .  
.. ..... 
.. 

. .  

... 

.:. . 

1 .  

\ 
5 

Dual F u n c t i  Spacrcnll combining spmcrlll 

Figure 5.6 Design space exploration by genetic algorithms (mutation rate = 0.1). Red dot is solution 
reported as “optimal”. 

This same case study (total system budget of $360M) was repeated using a genetic algo- 

rithm optimization scheme with a mutation rate of 0.15 and 0.05. The crossover rate was 

maintained at 0.6, and binary encoding and mutation and tournament selection were still 

used. The results can be seen in Table 5.7, and Figure 5.7. Note that these studies con- 

verged to a solution with a lower objective function value than the previous case study 

(with mutation rate = 0.1). The case study with the mutation rate set at 0.1 also returned 

the largest number of solutions both within 99% of the “optimal” objective function solu- 

tion and within 97.5% of the “optimal” objective function that differ from the “optimal” 

solution by the number of at least one type of spacecraft. Therefore it is assumed that a 

mutation rate of 0.1 is the optimal setting for this parameter. These full case study tests 

should be run if the tuning data for a particular parameter is in question, as was the case 



_ _  

Heuristic Algorithms 127 

Dual Functioning Spc. 

for the mutation rate in this study. While these tests do require time to run, since a full 

case study is accomplished for each setting, they provide greater confidence in the final 

solutions returned when they are completed. 

Mutation 
Rate = 0.05 

1 

TABLE 5.7 Genetic algorithm results from three case studies for varying mutation rates. Architectures 
shown are “optimal” architectures returned by the algorithm for each mutation rate. 

Collecting Spc. 
$M on combing optics 

4 
14 

I Combining Spc. I 1 

$M on collecting optics 
$M on bus 

12 
28 

8 

I Objective Function I 1.2872 

6 
I 202 

Solutions returned within 99% of I “optimal” solution 
Solutions returned within 97.5% of “opti- 
mal” solution, with different number of at 

least one type of spc. 

3 

0 1 1 
2 1 1 
5 1 4 
12 I 14 

9 I 11 
2 5 1  29 

1.2949 I 1.2871 
104 

244 I 

I 
1.296 
1.295 
1.294 

3 1.293 
5 1.292 

1.291 
1.29 

&L 

1 1.289 8 1.288 
1.287 
1.286 

0.04 0.06 0.08 0.1 0.12 0.14 0.16 

Mutanon Rate 
~ ~~ 

Figure 5.7 Mutation rate tuning information with full case studies. 



128 SYSTEM OPTIMIZATION AND RESULTS 

5.2 Sensitivity Analysis 

The analysis presented above is dependant upon 23 user defined inputs, or parameters, 

which are listed in Table 5.8. These parameters are constant for all architectures being 

evaluated, but can affect different architectures in different ways. The sensitivity of the 

solutions returned by all of the analyses discussed above to all of these parameters is cru- 

cial. Therefore a sensitivity analysis tool has been developed to find the sensitivity of the 

models to these parameters. This tool can be used to either check the robustness of the 

“optimal” or “best” architecture reported from one of the tools discussed previously, or to 

find the parameters which affect the outcome of the analyses and models the most. The 

parameters found to have the most effect on the outcome of the analyses can then be 

focused on starting early in the conceptual design stage to either improve the parameter 

value or decrease the uncertainty of the value. 

The sensitivity of each life cycle metric to each parameter is calculated using finite differ- 

ences. The parameter value is perturbed, and the resulting change in the life cycle metric 

is observed. This is shown in Equation 5.8, where Ap is the change in the parameter and 

Am is the change in the life cycle metric (number of images, reliability, cost per image, or 

%core”). 

sensitivity = Lk 
Am 

The number of perturbations (sensitivity points) and the percentage change between each 

perturbation (change in sensitivity points) is user defined. The total amount of perturba- 

tion is spread equally above and below the nominal parameter value. For example, if the 

user inputs three sensitivity points, with a change in sensitivity points of 0.01, the sensitiv- 

ity code will do an analysis with each parameter set at 99%, 10096, and 101% of the nom- 

inal parameter value. In addition, the user controls which of the 23 possible parameters 

listed in Table 5.8 are examined. This gives the user flexibility over the detail in the sensi- 

tivity analysis versus the time required to run the sensitivity analysis code. One strategy a 



Sensitivity Analysis 129 

Variable 
Name 
mo 
lo 
m 

TABLE 5.8 User defined parameters that affect the outcome of analysis results. 
~- 

Description Units 
Combining optics failure rate months-' 
Collecting optics failure rate months-' 

Combiner bus failure rate months-' 
1 
d 

Collector bus failure rate months-' 
months-! Dual functioning bus failure rate 

life 
S 

Mission design lifetime months 
Scale factor for increasing reliability with money 

spent 
NIA 

I lo-* I Collector optics theoretical first unit cost I $M 

N 
co 
ot 

mo-* 

Number of pairs of W points required per image 
Time required per pair of UV points 

Combiner optics theoretical first unit cost 

NIA 
months 

Overhead time per image months 
$M 

&-* 
lb,rf;z &-* 

Combiner bus thmretical first unit cost 
Collector bus theoretical first unit cost 

$M 
$M 
$M Dual functioning bus theoretical first unit cost 

OPS 

SJC 

Operations cost per month per baseline $M/month/ 
baseline 

Learning curve slope NIA 

I rei-avg I Average value for reliability (used for scaling) I NIA 

w-cpi Weighting of CpI in objective function 

user might employ is to take a small number of large step sizes first (i.e. 3 sensitivity 

points with a change in sensitivity of 0.05) looking at every parameter. Then, once the 

parameters which the metric in question is most sensitive to a ~ e  identified, these parame- 

ters can be run through the sensitivity analysis again, with a greater number of smaller step 

sizes. This sensitivity analysis can be run on architectures defined only as the number of 

NIA 

cpi-avg 
w-noi 

Average value for CpI (used for scaling) $M 
NIA Weighting of No1 in objective function 

mi-avg 
w-re1 

- 

Average value for No1 (used for scaling) 
Weighting of reliability in objective function 

images 
NIA 



130 SYSTEM OPTIMIZATION AND RESULTS 

each type of spacecraft (“sensitivitym”), or on architectures with the division of money to 

improve reliabilities included in the design vector (“sensitivi?yJZ-x.m ”1. 

A case study was done on an architecture with zero dual functioning spacecraft, two com- 

bining spacecraft, and five collecting spacecraft without the division of money included in 

the design vector. This particular architecture was chosen since it was reported as the 

“optimal” design vector by both the simulated annealing and genetic algorithm optimiza- 

tion schemes. All parameters were examined at one percent intervals up to 25% of the 

nominal design. The results from this case study can be seen in Figure 5.8. Only those 

variables that had any effect on the metric being studied are shown. 

1rM. 1 

-+--Ib F l  *dd 

% 98 97 98 69 100 101 100 103 104 iW3 
Pwum nomllul p n M r  nlu 

a 

103 1 =J?? 

C. 

b. 

d. 

Figure 5.8 Sensitivity analysis results for zero dual functioning, two combining, and five collecting 
spacecraft architecture with no money spent on improving reliabilities. 

The parameters with the largest effect on each metric are labeled in Figure 5.8. The mis-  

sion design lifetime, number of pairs of UV points needed per image, and integration time 



Sensitivity Analysis 131 

per pair of W points have the largest effect on the number of images. The mission design 

lifetime and learning curve slope have the largest effect on the cost per image. The mis- 

sion design lifetime has the largest effect on the reliability. Finally, all four of these 

parameters (mission design lifetime, number of pairs of W points, integration time per 

pair of UV pints, and learning curve slope) plus the weighting factor of the cost per 

image in the objective function definition and the average value used to scale the cost per 

image have the largest effect on the objective function value. It makes sense that the 

weight attached to the cost per image and average cost per image have a larger effect on 

the objective function than the weight on and average of the number of images and the 

reliability, since the cost per image has a larger initial weighting (0.4 versus 0.3 for the 

other two metrics). The mission design lifetime has one of the largest effects of all the 

parameters on all four of the metrics shown in Figure 5.8. Therefore, a more detailed sen- 

sitivity analysis was done focusing only on the mission design lifetime. The results for the 

sensitivity of the number of images to the mission design lifetime are shown in Figure 5.9. 

F i i i  5.9 Detailed sensitivity analysis for mission lifetime versus expected total number of 
images (NoI) 

If there were no failures in the system, it would be expected that the number of images 

would scale directly with the lifetime of the mission, such that a mission with a 10% 

longer lifetime would produce 10% more images. Once failures are taken into account 



132 SYSTEM OPTIMIZATION AND RESULTS 

however, this relationship is not nearly as simple. If failures have occurred, the system 

will not be as productive later in life as it was in the beginning of the mission. Therefore a 

10% increase in the mission lifetime should result in a less than 10% increase in the num- 

ber of images produced. Similarly, a 10% decrease in the mission lifetime should result in 

a less than 10% decrease in the total number of images produced. In addition, a larger per- 

centage decrease in the number of images is expected when a mission lifetime is shortened 

then a similar increase in the number of images if a mission lifetime is increased by the 

same percent. This is due to the failures expected to occur, making the system less pro- 

ductive, in the time from the shortened lifetime to the nominal lifetime and again from the 

nominal lifetime to the extended lifetime. Figure 5.8 shows a 7% increase in the number 

of images if the mission lifetime is extended lo%, and a 7.5% decrease in the number of 

images if the mission lifetime is decreased by lo%, matching with the previous predic- 

tions. 

One of the major questions that the sensitivity analysis tool is trying to answer is whether 

or not changes in the user inputted parameter values would cause a change in which archi- 

tecture is reported as “optimal”. This can be answered by comparing the sensitivity of 

multiple architectures to the same changes in the design parameters. The architecture 

reported by the genetic algorithm with an objective function value nearest to the objective 

function value of the “optimal” solution, with the number of at least one type of spacecraft 

different from the “optimal” solution, has one dual functioning spacecraft, one combining 

spacecraft, and four collecting spacecraft. A sensitivity analysis of this architecture, with 

no money spent on improvements to component reliabilities, was carried out to compare 

with the results of the sensitivity analysis of the “optimal” solution. The full results of this 

comparison can be seen in AppendixD, and a sampling of the results can be seen in 

Figure 5.10. 

In Figure 5.10a and Figure 5.10b, the sensitivity lines for the two different architectures 

are parallel to one another. Therefore, if one of parameters the user reported was not cor- 

rect, or changed for one reason or another, while both architecture’s objective functions 



Sensitivity Analysis 133 

1.28 

’ 1.24 f 1.28 

8 1.22 s i ;1: 

1.14 

I I 

1-042m91 +ld.lm4 

I I 

a b. 

c d. 
F ~ r e  5.10 Sensitivity analysis for both 0 dual functioning, 2 combining, and 5 collecting spacecraft and 

1 dual functioning, 1 combining, and 4 collecting spacecraft architectures. Sensitivity of 
objective function value to a) combining optics failure rate, b) number of pairs of W points 
needed per image, c) learning curve slope, and d) dual bus failure rate. 

would change, they would change by the same amount. This implies that the architecture 

which was reported as “best” or “optimal,” with the highest objective function value, 

would be reported as the “optimal” solution no matter what the parameter value was set at. 

While the sensitivity lines of the objective function to the majority of parameters are par- 

allel in this fashion, there are parameters in which this is not the case. If the sensitivity 

lines of the objective function to one of the parameters are not parallel, such as is the case 

in Figure 5 . 1 0 ~  and Figure 5.1Od, the “~ptimal” architecture could change, depending on 

the parameter value. Note that the y-axes in Figure 5.10 are objective function value, and 

not percent change in objective function value. This allows the user to find the parameter 

value at which the architecture that began at a lower objective function value would 

become the “better” architecture, with a higher objective function value than the other 

architecture. The sensitivity lines of the objective function value to the dual functioning 



134 SYSTEM OPTIMIZATION AND RESULTS 

spacecraft bus failure rate are not parallel, as shown in Figure 5.1Od. These lines however 

will not cross for significant change in the parameter value, implying that the dual func- 

tioning spacecraft failure rate would need to be very far off from the nominal value to 

change the “optimal” solution, and therefore the “optimal” solution is fairly robust to this 

parameter. The sensitivity lines of the objective function value to the learning curve slope 

are also not parallel, as shown in Figure 5.1Oc, and are near intersection by 5% above the 

parameter value. This parameter would therefore need to be examined in greater detail to 

ensure that the reported “nominal” value was within approximately 5% of the actual value 

before running any optimization algorithm or comparing any architectures using this 

model. The default learning curve slope of 95% was suggested by Wertz and Larson for 

use with systems in which less than 10 units will be built [Wertz and Larson, 19991. 

Sensitivity analyses were also carried out on the two architectures discussed above with 

the money spent to improve reliabilities of the components included in the architecture 

definition. The two architectures compared were the architectures reported by the genetic 

algorithm optimization scheme as the “optimal” architecture (zero dual functioning space- 

craft, two combining spacecraft, five collecting spacecraft, $12M spent to improve the 

reliability of the combining optics, $9M spent to improve the reliability of the collecting 

optics, and $25M spent to improve the reliability of the bus) and the architecture with the 

second highest objective function value while still differing from the “optimal” solution 

by the number of at least one type of spacecraft (one dual functioning spacecraft, one com- 

bining spacecraft, four collecting spacecraft, $12M spent to improve the reliability of the 

combining optics, $13M spent to improve the reliability of the collecting optics, and 

$30M spent to improve the reliability of the bus). These two architectures were only ana- 

lyzed for the sensitivity of the life cycle metrics to 10 of the 23 parameters. The ten 

parameters tested were the dual functioning spacecraft bus failure rate (4, the mission 

design lifetime (life), the scale factor used to map the money spent to improve the reliabil- 

ity of a component to the actual reliability increase (9, the learning curve slope (s-Zc), and 

the weighting and average values for each of the three life cycle metrics used in the objec- 



Sensitivity Analysis 135 

I 

tive function (w-cpi, avg-cpi, w-noi, avg-mi, w-rel, avg-rel). The full results of these 

tests can be seen in Appendix D, and a sampling of the results can be seen in Figure 5.11. 

a. 

~ 

b. 

1.33 

f 1.32 ’ 1.31 
1.3 

P 1.29 

::: 
1.28 4 - ,  , , . , . . . . . I 

95 96 97 96 99 loo lol rm 103 104 105 
P.n*ntMmnIml4r-Cpr v a t u  

I J L  

I 1.33 =------ 
132 

1.31 

1.3 

1 2 9  

1 .a - 1.27 
I-manllj -m-l41m4 

c d. 
Figure 5.11 Sensitivity analysis for both 0 dual functioning, 2 combining, and 5 collecting spacecraft and 

1 dual functioning, 1 combining, and 4 collecting spacecraft architectures when money spent 
to improve reliabilities of components is included in the design vector. Sensitivity of objec- 
tive function value to a) dual functioning spacecraft bus failure rate, b) scale factor used to 
map money spent to improvement in reliability, c) weight of cost per image in objective 
function value, and d) learning curve slope. 

While the majority of the sensitivity lines of the objective functions to the different param- 

eters were closer together in this case study than in the previous case study (with no 

money spent to improve the reliability of components), the majority of lines in this case 

study are once again parallel, or nearly parallel. This is true for both the scale factor used 

to map the amount of money spent to improve reliabilities to the actual increase in reliabil- 

ity, as shown in Figure 5.11 b, and the weightings and average value for each of the life 

cycle metrics. The sensitivity lines of the objective function to the weighting placed on 

the cost per image in the objective function are shown in Figure 5.11c, as an example of 



136 SYSTEM OPTIMIZATION AND RESULTS 

this last category of parameters. The results for the other metric weightings and average 

values can be seen in Appendix D. The fact that the sensitivity lines for these parameters 

are parallel, or nearly parallel, for these two architectures once again shows that the “best” 

or “optimal” architecture will not change if the nominal value of these parameters change. 

The sensitivity lines for the objective functions to the dual functioning spacecraft bus fail- 

ure rate are shown in Figure 5.11a, and are once again not parallel. It is clear however, in 

a similar fashion as was shown in the previous case study, that the two lines will not cross 

for any reasonable change in the parameter value, implying that the dual functioning 

spacecraft failure rate would need to be very far off from the nominal value to change the 

“optimal” solution, and therefore the “optimal” solution is fairly robust to this parameter. 

The sensitivity lines of the objective function value to the learning curve slope are shown 

in Figure 5.11d, and intersect at 103% of the nominal parameter value. This corresponds 

to a learning curve slope of 97.85%. This once again reinforces the need for this parame- 

ter to be examined in close detail before running any optimization algorithm or comparing 

any architectures using this model. 

The sensitivity analysis tool developed can be tuned by the user to a wide range of sensi- 

tivity analysis options. These sensitivities can then be used to examine the robustness of 

designs and the effect of changing a user defined parameter on the outcome of the model 

and analysis tools discussed earlier. This type of sensitivity analysis can be especially 

important in the early stages of conceptual design, when most of the tools developed in 

this research are meant to be used, since the majority of the user defined inputs are very 

uncertain and may change drastically by the time the design is completed. The sensitivity 

analysis tools shown here will also help the designer to better learn which parameters to 

focus efforts on during the conceptual design phase, either to improve the parameter val- 

ues or to reduce the uncertainty of the parameter, since they will effect the design out- 

comes more than other parameters. This was shown above with the example of the 

learning curve slope. 



chaptersummary 137 

5.3 Chapter Summary 

This chapter has presented several tools to aide the user in effectively searching the entire 

design space to find the “optimal” architecture, in terms of the number of each type of 

spacecraft and the money spent to improve individual component reliabilities, to achieve 

the highest total performance possible for a given budget. Two different heuristic algo- 

rithms, simulated annealing and genetic algorithms, were presented along with examples 

of their use. Genetic algorithms proved to be a very powerful design tool for the early 

stages in the design process, as this optimization scheme was able to return not only the 

“optimal” solution, but also several other unique and different architecture solutions 

which provide similar performance. Finally, a sensitivity tool was presented along with 

several case studies showing the various uses and insights that can be gained from this 

type of analysis. 



138 SYSTEM OPTIMIZATION AND RESULTS 



Chapter 6 

CONCLUSION 

As technological systems grow in capability, they also grow in complexity. The number 

of components and interactions inherent in most of these systems today makes the design 

process quite challenging. With these complex systems, it is no longer possible for a 

designer to use engineering judgement to identify the components that have the largest 

impact on the life cycle metrics of the system as a whole, such as reliability, productivity, 

cost, and cost-effectiveness. The decisions made early in the design process however, 

including decisions of which components to focus efforts on, affect almost all aspects of 

the system further on in the design process. Therefore, it is imperative when dealing with 

complex systems to make the high-level architecture decisions early in the design process 

that will most cost effectively improve the life cycle metrics of the system as a whole. 

One way of accomplishing this is to build quantitative models and analysis tools which 

can be used to aid the designer in making these conceptual design decisions. Additionally, 

when missions are considered high risk, or are dealing with new and uncertain technole 

des, it is also important to ensure that these models capture the system behavior in the 

event of failures. 

Once the key components that affect system life cycle metrics have been identified, two 

main approaches to improving the system using these components exist: adding redun- 

dancy or improving the reliability of the component. In actuality, the most effective 

approach to almost any system will be some combination of these two approaches in vary- 

139 



140 CONCLUSION 

ing orders of magnitude for each component. The exact combination and magnitudes for 

each component is not clear to the designer without quantitative models and analysis tools. 

Therefore this research attempts to answer the question of how to divide funds, between 

adding redundancy and improving the baseline reliability of components, to most cost 

effectively improve the life cycle metrics of a system. 

The first step in the process of answering the question posed above was to develop the 

models needed to analyze each architecture. To accomplish this, reliability, productivity, 

and cost models were developed for the application used throughout this research - sepa- 

rated spacecraft interferometers. These models all rely on the state-transition matrix - the 

matrix which defines the probability that the system is in each state throughout the life of 

the mission. A tool was developed, and verified, to automatically generate this state-tran- 

sition matrix, given the rules of system failure. This tool, along with several of the meth- 

ods used to calculate the total expected productivity (number of images), reliability, and 

cost-effectiveness (cost per image), could be used to analyze almost any space system by 

modifying the rules of system failure, the definitions of the states of the system, and the 

models for the productivity of the system in each state. The models and tools developed 

were tested using a variety of case-studies. 

In the next step, a new metric was introduced to compare the total performance, by cou- 

pling all of the life cycle metrics described above, of different user-defined architectures. 

This metric was tested, and results were shown using two different case studies, both with 

and without money spent to improve the reliability of components. It is worth noting that 

the architecture with the best total performance is not necessarily the architecture with the 

best performance in any of the three individual life cycle metrics. Through these case 

studies, trends were identified which give general rules of thumb on how to divide a given 

amount of money among different components to improve individual reliabilities in order 

to improve the overall system reliability as much as possible. 



Contributions 141 

The final step was to develop tools to aide the user in effectively searching the entire 

design space to find the "optimal" architecture in terms of the number of each type of 

spacecraft and the money spent to improve individual component reliabilities to achieve 

the highest total performance possible for a given budget. Two different heuristic algo- 

rithms, simulated annealing and genetic algorithms, were presented along with examples 

of their use. Genetic algorithms proved to be a very powerful design tool for the early 

stages in the conceptual design process, as this optimization scheme was able to return not 

only the "optimal" solution, but also several other unique and different architecture solu- 

tions which provide similar levels of performance. Finally, a sensitivity tool was pre- 

sented along with several case studies showing the various uses and insights that can be 

gained from this type analysis. 

6.1 Contributions 

The objective of this research was to develop models and tools to help answer high-level 

architecture conceptual design questions in order to design a system with the highest life 

cycle throughput for a given cost. The specific contributions of the research are divided 

into two categories - tool development and case study results. 

Tool Development 
State-transition matrix - An automatic state-transition matrix generation 
Matlab tool was developed. This tool can be used to generate a state-transi- 
tion matrix for any system given the rules of system failure. 
Modeling - Models for productivity, reliability, and cost analysis for sepa- 
rated spacecraft interferometry systems were developed. The method of cal- 
culating reliability, as well as the method of integrating productivity and cost 
through the mission lifetime to determine a total expected productivity and 
cost, is applicable to all space systems. Models for the productivity and cost 
of the system in each state are specific to SSI systems. 
Comparison - A tool was developed to compare multiple user defined archi- 
tectures in terms of total performance. These architectures can be defined in 
terms of either just the number of each type of spacecraft, or the number of 
each type of spacecraft and the total system budget with any money not 



142 CONCLUSION 

spent on buying and operating spacecraft spent on improving the reliability 
of individual components. 
Optimization - Tools were developed to implement two heuristic optimiza- 
tion techniques to search the entire design space for the “optimal” SSI archi- 
tecture, in terms of total performance for a given budget, where architectures 
were defined by both the number of each type of spacecraft and the money 
spent to improve the reliability of each component. Simulated annealing and 
genetic algorithm tools were implemented. 
Sensitivity analysis - Sensitivity analysis tools were developed to find the 
sensitivity of any architecture, defined either in terms of simply the number 
of each type of spacecraft or the number of each type of spacecraft and the 
money spent to improve component reliabilities, to any of the user-defined 
constant parameters used in the models and tools developed above. 
Toolbox - All the models and tools described above were integrated into a 
single Matlab toolbox. Table 6.1 lists the most important files found in the 
toolbox, with a brief description of each. For a complete listing of all files in 
the toolbox, along with a description of all the user defined inputs, or param- 
eters, please see Appendix E. 

SSI Case Study Results 
When dividing money to be spent on improving individual component reli- 
abilities for a given architecture (defined by the number of each type of 
spacecraft), more money should be spent improving the reliability of the col- 
lecting optics than improving the reliability of the combining optics only 
when there are two or more additional spacecraft capable of collecting light 
than there are capable of combining light. 
When dividing money to be spent on improving individual component reli- 
abilities for a given architecture (defined by the number of each type of 
spacecraft), the rules for when to spend more money improving the reliabil- 
ity of the bus than the reliability of either set of optics change with the total 
number of spacecraft and the total system budget. Rules of thumb can be 
developed for each of these cases however. 
For a total system budget of $360M, the “optimal” architecture, in terms of 
total performance, has zero dual functioning spacecraft, two combining 
spacecraft, and five collecting spacecraft, with $12M spent to improve the 
reliability of the combining optics, $9M spent to improve the reliability of 
the collecting optics, and $25M spent to improve the reliability of the bus. 
An additional seven architectures have been identified, unique in the number 
of each type of spacecraft, which have a total objective function value within 
97.5% of the “optimal” objective function value. These eight architectures 



Contributions 143 

inputs.m 

TABLE 6.1 File descriptions from Reliability and Productivity Matlab toolbox. 

Contains all user defined inputs, or parameters. Called in other 
functions to set the values of these parameters. 

DV-toJm 

state.m 

Finds the objective function, number of images, reliability, and 
cost per image of a given architecture. 

Recursive function which generates the state-transition matrix 
for a given system. 

arch_ 
comparison.m 

arch- 
comparison-w-imp 

r.m 

Compares user given architectures in terms of total performance. 
Spends no money on improving component reliabilities. 

Compares user given architectures in terms of total performance. 
Includes optimal division of money to improve component 

reliabilities. 

sim-uruzeuZing.m 

can now be compared in terms of less quantifiable metrics, such as risk, 
political effect, or heritage. 

Finds the “optimal” architecture, in terms of performance for a 
given budget, defined by the number of each type of spacecraft 

and the money spent to improve the reliability of each 
component. Uses simulated annealing optimization algorithm. 

J-GA-m Calls genetic algorithm program to find the “optimal” 
architecture, in terms of performance for a given budget, defined 
by the number of each type of spacecraft and the money spent to 

improve the reliability of each component. 

ser2sitivity.m Finds the sensitivity of a given architecture to user defined 
parameters (does not include money to improve component reli- 

abilities). 
sensitivityJkZZ-xm Finds the sensitivity of a given architecture to user defined 

parameters (does include money to improve component 
reliabilities). 



144 CONCLUSION 

6.2 Future Work 

The research presented here is the first step to solving a complex space system conceptual 

design problem. While several of the tools developed here are the building blocks 

required to continue to examine the questions posed, there is still a lot of work that can be 

done in this area of research. A list of some of the possibilities for future work in this 

problem is shown below. 

Improved model fidelity - The fidelity of the models developed in the 
research presented here could be improved. The accuracy of the results from 
any of the analysis tools will improve greatly with improved fidelity of the 
models used. Modeling of lower level components, addition of repair, 
improved cost models, and improved estimates of user defined parameters 
will lead to higher fidelity models, and therefore more accurate results. 
Uncertainty analysis - All of the analysis presented in this research depends 
on several user defined parameters. Several of these parameters are highly 
uncertain, such as the failure rates of the components. An analytic sensitiv- 
ity analysis to such parameters could provide more accurate results than 
those reported in this research. In addition, propagating the uncertainty 
inherent in these parameters through the analyses could give the designer a 
better feel for how this uncertainty will affect the design. 
Robust design - In addition to uncertainty propagation, the uncertainty in the 
user defined parameters also implies the need of the designer to take robust 
design issues into account when making design decisions. Several robust 
design tools could be incorporated into this research, including Monte Carlo 
analyses, reliability analyses, and Taguchi methods. 
Multiobjective optimization - Multiobjective optimization techniques, such 
as solving for the Pareto front and ranking solutions in terms of domination, 
could help to take away any dependence of the solutions returned from the 
optimization programs to the weighting factors and average values of the 
different metrics used in the current objective function. 
Improved optimization algorithms - Hybrid optimization algorithms, such as 
using a heuristic technique followed by a gradient based technique, can help 
to reduce the possibility of a solution being returned which is not at least a 
local optimum. 
Applications - The optimization tools presented here could be used on a 
wide array of other total system budgets. This could allow designers to 
begin to see trends in the solutions and to develop generic rules of thumb, or 
heuristics, for how to divide money among redundancy and improved reli- 



Future Work 145 

ability to achieve the best performance possible. In addition, more experi- 
ments involving the optimization of just the division of money to improve 
reliabilities among components would lead to stronger trends, and therefore 
improved rules of thumb, for this category of problem as well. 



146 CONCLUSION 



REFERENCES 

[Babcock, 19861 Babcock, P.S., An Introduction to Reliability Modeling of Fault-Tolerant 
Systems, The Charles Stark Draper Laboratory, Inc., Technical Report, Septem- 
ber 1986. 

[Belanger, 19951 Belanger, P., Contml Engineering: A Modern Approach, Saunders Col- 
lege Publishing, Philadelphia, PA, 1995. 

[deweck, 20021 deWeck, O., Genetic Algorithms Basic Introduction, MI" 16.899 Multi- 
disciplinary System Design Optimization Lecture Notes, 2002. 

[GSFC, MAXIM. 20011 Goddard Space Flight Center, "Micro-Arcsecond X-ray Imaging 
Mission", Goddard Space Flight Center [Online], available at http:// 
maxim.gsfc.nasa.gov/maxim.html, July 2001. 

[GSFC, SZ, 20011 Goddard Space Flight Center, "The Stellar Imager (SI) Homepage", 
Goddard Space Flight Center [Online], available at http://hires.gsfc.nasa.govJ 
-si/, July 200 1. 

[GSFC, SPECS, 20011 Goddard Space Flight Center, "Submillimeter Probe of the Evolu- 
tion of Cosmic Structure", Goddard Space Flight Center [Online], available at 
http:/lspace.gsfc.na.gOv/astroJspecs/, July 2001. 

[Holland, 19751 Holland, J., Aabptation in natural and artijicial systems, University of 
Michigan Press, 1975. 

[Houck, Joines, &Kay, 19951 Houck, C., Joines, J., Kay, M., "A Genetic Algorithm 
for Function Optimization: A Matlab Implementation", available online at httpd/ 
www.ie.ncsu.edu/gaot/, 1995. 

[ZNCOSE, 19981 INCOSE, Systems Engineering Handbook, San Fransisco Bay Area 
Chapter International Council on Systems Engineering, Technical Report, Janu- 
ary 1998. 

[Jilla, 20001 Jilla, C., Reliability Analysisfor TPF, Massachusetts Institute of Technology 
Space Systems Laboratory, Memorandom, June 2000. 

[Jilkz, 20021 Jilla, C., Simulated Annealing, MIT 16.899 Multidisciplinary System 
Design Optimization Lecture Notes, 2002. 

[JPL, LE 20011 Jet Propulsion Laboratory, "Life Finder (LF)" Jet Propulsion Laboratory 
[Online], available at http://origins.jpl.nasa.gov/missions/lf.html, July 2001. 

147 



148 REFERENCES 

[JPL, LISA, 20011 Jet Propulsion Laboratory, “Laser Interferometer Space Antenna”, Jet 
Propulsion Laboratory [Online], available at http://lisa.jpl.nasa.gov/, July 2001. 

[JPL, TPE 20011 Jet Propulsion Laboratory, “Terrestrial Planet Finder (TPF)”, Jet Pro- 
pulsion Laboratory [Online], available at http://origins.jpl.nasa.gov/missions/ 
tpf.html, July 2001. 

[Kirkpatrick, Gelatt, and Vecchi, 19831 Kirkpatrick, S. ,  Gelatt, C.D., and Vecchi, M.P., 
“Optimization by Simulated Annealing”, Science, Volume 220, Number 4598,13 
May 1983, pp. 671-680. 

[Luy, 20011 Lay, 0. Interviews by author. June-August 2001. 

[Metropolis et al., 19531 Metropolis, N., Rosenbluth, M., Rosenbluth, A., Teller, A. and 
Teller E., “Equation of State Calculations by Fast Computing Machines”, J. 
Chem. Phys., Volume 21, Number 6,1953, pp. 1087-1092. 

[MiZZer; ZUOZ] Miller, D. Interview by author. July 2001. 

[Selby, 19711 Selby, S.M., Standard Mathematical Tables - Nineteenth Edition, The 
Chemical Rubber Co., Clevland, OH, 1971. 

[Shaw, Miller; and Hastings, 20001 Shaw, GB., Miller, D.W. and Hastings, D.E., “Gener- 
alized Characteristics of Satellite Systems”, Journal of Spacecrafr and Rockets, 
Vol. 37,No. 6,2000, pp.801-811. 

[Strang, 19861 Strang, G, Introduction to Applied Mathematics, Wellesley-Cambridge 
Press, Wellesley, MA, 1986. 

[Wertz and Larson, 19991 Wertz, J., and Larson, W., Space Mission Analysis and Design, 
Kluwer Academic Publishers, Boston, MA, 1999. 



Appendix A 

RELIABILITY AND PRODUCTIVITY 
TOOLBOX SOURCE CODE 

A Matlab toolbox containing all the tools and models previously described has been 

assembled. The source code for the major files contained in the toolbox is shown below. 

Please see Appendix E for a listing and description of all files and the user-defined inputs 

in the Reliability and Productivity toolbox. 

A.I “s&te.rn” 
%This function automatically generates an A matrix for 
%any architecture (number of duals, combiners, and 
%collectors). The logic and process used in this code 
%could easily be modified to generate an automatic 
%A matrix for any system. It is a recursive function. 
%This function finds the A matrix for the system assuming 
%a failure rate is known for collecting optics, combining 
%optics, collector bus, combiner bus, and dual functioning 
%bus. The collector and combiner are assumed to fail when 
Beither their optics or bus fail. The dual functioning 
%spacecraft can fail in three modes. If the dual functioning 
%spacecraft collector optics fail, the spacecraft becomes a 
%combiner. If the dual functioning spacecraft combiner 
Boptics fail, the spacecraft becomes a collector. If the 
%dual functioning spacecraft bus fails, the whole spacecraft 
%fails. 

8 INPUTS 
%a: A matrix - originally this consists of just the first 
%entry (rowl, coll) , however when it is recursively called 
%this allows the A matrix to updated. 

%d,m,l: Number of dual functioning, combining, and 
%collecting spacecraft respectively 

149 



APPENDIX A 

Blast-state: Number of previous state for keeping track 
%of where each state came from 

%dml: The dml matrix has a row for each state and the 
%number of duals, combiners, and collectors in each 
%column, respectively 

%f-mO,f-lo,f-d,f-m,f-l: Failure rates for combining and 
%collecting optics, and dual functioning, 
%combining, and collecting buses respectively 

%Set initial conditions 
i = 1; 
state-num = 0; 

%Define a state vector, dml-new 
dml-new = [d m 11; 
statel = 0; 
%if dml(1,:) = [ O  0 03 then this must be the first time 
%through state.m 
if dml(1,:) == [O 0 01 
number-of-states = 0; %Therefore, there are 0 present states 
statel = 1; %This is the first state. If statel == 1 

%then don't change the current entry in the a matrix 
%but continue with the recursive process. 

else %Otherwise find the number of present states 
[number-of-states,junk] = size(dm1); 
end 

?.Check to see if the current state has already been 
%identified and given a state number 
while i <= number-of-states 
if dml(i,l) == dml-new(1) 
if dml(i,2) == dml-new(2) 
if dml(i,3) == dml-new(3) 
state-num = i; 
end 
end 
end 
i = i+l; 
end 

%If the current state hasn't been identified before, 
%give it a state number and add it to the d m l  matrix 
if state-num == 0 
state-num = number-of-states + 1; 
dml(state-num, : )  = dml-new; 
end 



APPENDIX A 151 

%Check to see what has changed from the last state 
%i.e. if change == 1.3, then a dual bus has failed since the 
Blast state. 
if dml-new(1) -= dml(last-state,l) 

if dml-new(2) -= dml (last_state,2) 
change = 1.1; %If change = 1.1 then dual collecting 

%optics have failed 
elseif dml_new(3)-= dml(last_state,3) 

change = 1.2; %If change = 1.2 then dual combining 
%optics have failed 

else 

%failed 

elseif dml-new(2) -= dml(last_state,2)& dml-new(l) == 
dml(last_state,l) 

change = 2; %If change = 2 then a combiner has failed 
8 (optics or bus) 
elseif dml-new(3) -= dml(last_state,3)& dml-new(1) == 
dml (last-state, 1) 
change = 3; %If change = 3 then a collector has failed 
8 (optics or bus) 
elseif state1 == 1 
change = 0; %If change = 0 then this is the first state 
%and no change should be made 
else 
error(’No change in state‘) 
end 

change = 1.3; %If change = 1.3 then a dual bus has 

end 

) 

a(statenum,state_num)=(d*f-d+d*f_mo+d*f-lo+m*(f-m+f-mo)+l*( 
f-l+f-lo) 1 ;  
if change == 1.1 

elseif change == 1.2 

elseif change == 1.3 
a(state-nun, last-state) = (d+l) *f-d; 
elseif change == 2 
a(state-num,last-state) = (m+l)*(f-m+f-mo); 
elseif change == 3 
a(state-num,last-state) = (l+l)*(f-l+f-lo); 
end 

a(state-nun, last-state)=(d+l)*f-lo; 

a(state-nun, last-state) = (d+l) *f-mo; 

d-new = d-1; 
m-hew = m+l; 
m-new = m-1; 
1-hew = 1+1; 
1-new = 1-1; 



152 APPENDIX A 

%Only continue down "branch" if all "rules" are acceptable 
%(i.e. another failure will not lead to system failure) AND 
%if this "branch" has not been recorded before (i.e. this is 
%the first time this state has been seen) 
i f  d + l  > 2 & d + m  > 1 & d + m + l >  3 & d >= 1 & state-num > 
number-of-states 
[a,dmll= 
s t a t e ( a , d _ n e w , m , l , s t a t e _ n u m , d m l , f _ m o , f _ l , f - l ) ;  
end 

i f  d+ l  > 2 & d + m  >= 1 & d + m + l >  3 & d >= 1 & state-num > 
number-of-states 
[a,dml]= 
state(a,d_new,m_dnew,l,state_num,dml,f-mo,f-lo,f-d,f-m,f-l); 
end 

i f  d + l  >= 2 & d + m  > 1 & d + m + l >  3 & d >= 1 & state-num > 
number-of-states 
[a ,dml]  = 
state(a,d_new,m,l_dnew,state_num,dml,f-mo,f-lo,f-d,f-m,f-l); 
end 

i f  d + l  >=2 & d + m  > 1 & d + m + l >  3 & m >= 1 & state-num > 
number-of-state 
[a ,dml l=  
s ta te (a ,d ,m_new, l , s ta te_num,dml , f -mo, f_ l , f - l ) ;  
end 

if d + l  > 2 & d + m  >= 1 & d + m + l  > 3 & 1 >= 1 & state-num > 
number-of-states 
[a ,dml]=  
s t a t e ( a , d , m , l _ n e w , s t a t e _ n u m , d m l , f _ m o , f _ l , f - l ) ;  
end 

A.2 'LDV-toJ.m" 
%This Matlab code takes in a design vector (DV) 
%and produces the expected total number of 
%images (NoI) the system will produce in the 
%given lifetime, the reliability of the system, 
%the cost per image, the state-transition matrix, 
%and the objective function. This is accomplished by 
%calculating the probability of being in each 
%state of the system throughout time and using 
%a model to predict the producitivity and cost of each 
%of these states. The probability of being 
%in each state is then multiplied by the 
%productivity or cost of the state and all states 
%are summed to get the total expected productivity 



MPENDIX A 153 

%for that time period. 
%A state is defined as a set of each of the 
%satellites in either a failed or unfailed 
%mode. The design vector is defined as 
%the number of dual functioning spacecraft, 
% the number of combining spacecraft, the 
%number of collecting spacecraft, the money 
%spent to improve the reliability of the 
%combining optics in millions of dollars, 
%the money spent to improve the reliability of the 
%collecting optics in millions of dollars, and 
%the money spent to improve the reliability of the 
%bus in millions of dollars. All system parameters 
Bare listed in the inputs-m file. 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

% I N P U T S  
%x = design vector (dual, corn, col, Xmo, Xlo, Xb) 
%where - 
%dual = # of dual functioning spacecraft 
%com = # of combining spacecraft 
%col = # of collecting spacecraft 
%Xmo = $M spent on improving reliability of combining optics 
%Xlo = $M spent on improving reliability of. collecting 
8 optics 
%Xb = $M spent on improving reliability of bus 

8 OUTPUTS 
%J = objective function 
%No1 = Expected total number of images produced 
%a = state-transition matrix 
%Re1 = Reliability of system 
%Cpi = Cost per Image 

function [J, N O ~ ,  a, Rel. Cpil = DV-to-J(x); 

clear P PO t col corn dual A n nl Nc Tc Ti Ci a I M No1 ci R 

%Call out the elements of the design vector 
dual = x(1); 
corn = x(2 ) ;  
col = x ( 3 ) ;  
xmo = x ( 4 ) ;  
Xlo = x ( 5 ) ;  
Xb = ~ ( 6 ) ;  



154 APPENDIX A 

%Call out the system parameters 
inputs 

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

%Use local variables instead of global variables 
rno = COMBINER-OPTICS-FAILURE-RATE; 
%Failure rate of combiner optics in months"-1 
lo = COLLECTOR-OPTICS-FAILURE-RATE; 
%Failure rate of collector optics in months"-1 
d = DUAL-BUS-FAILURE-RATE; 
%Failure rate of dual functioning bus in monthsA-1 
mb = COMBINER-BUS-FAILURE-MTE; 
%Failure rate of combiner bus in months"-1 
lb = COMBINER-BUS-FAILURE-RATE; 
%Failure rate of combiner bus in monthsA-1 
life = MISSION-DESIGN-LIFETIME; 
%Mission design life in months 
S = SCALE-FACTOR-FOR-INCREASE; 
%Scale factor for increased reliability 
corn-req = REQUIRED-COMBINING-SPC; 
%Number of required spacecraft acting as combiners 
col-req = REQUIRED-COLLECTING-SPC; 
%Number of required spacecraft acting as collectors 
total-req = REQUIRED-TOTAL-SPC; 
%Number of total spacecraft required 
N = NUMBER-OF-DIFFERENCES; 
%Number of independant differences (number of pixels/2) 
CO = TIME-PER-CONFIGURATION; 
%Time in months needed in each configuration 
Ot = OVERHEAD-TIME-PER-IMAGE; 
%Overhead time per image in months 
B-tot = TOTAL-SYSTEM-BUDGET; 
%Total system budget(spacecraft + improvements) 
sf-cpi = WEIGHTING-FOR-CPI*AVEMGE-VALJJE~FOR-CPI; 
%Scale factor for weighting CPI 
sf-noi = W E I G H T I N G ~ F O R ~ N O I / A V E M G E ~ V A L L J E ~ F O R ~ N O I ;  
%Scale factor for weighting No1 
sf-re1 = WEIGHTING-FOR-REL/AVERAGE_VALUE_FOR_REL; 
%Scale factor for weighting Reliability 

-_ - - - -_ -__- - - -__- - - - - - - - -  

%Set all metrics to worse possible if architecture does not 
%function in initial state 
if corn + dual < corn-req I col + dual e col-req I corn + col + 
dual e total-req 

Re1 = 0; 
N o 1  = 0; 
cost = 100000000; 
a=O; 

else 



APPENDIX A 155 

- - - - - - _ _ _ _ _ _ _ - _ - - _ - _ - -  
%Calculate new reliabilities after money is spent to improve 

%Change failure rates into reliabilities 
R-mo = exp(-mo*life); 
R-lo = exp(-lo*life); 
R-d = e*(-d*life); 
R-mb = exp(-mb*life); 
R-lb = e-(-lb*life); 

%Increase reliabilities given money spent to improve 
R-mo-f = R-mo + (l-R-mo)*(l-exp(-Xmo/S) ) ;  

R-mb-f = R-mb + (1-R-mb) * (l-exp(-Xb/S) 1 ; 
R-lb-f = R-lb + (l-R-lb)*(l-exp(-Xb/S)); 
R-d-f = R-d + (1-R-d) * (1-exp(-Xb/S) ) ; 

R-10-f = R-10 + (l-R_lO)*(l-exp(-XlO/S)); 

%Change reliabilities back into failure rates 
mo-f = -(log(R-mo-f))/life; 
mb-f = -(log(R-mb-f))/life; 
10-f = -(log(R-lo-f))/life; 
lb-f = -(log(R-lb-f))/life; 
d-f = -(log(R-d-f))/life; 

- _ - _ - _  
%Generate the state-transition matrix 

%The dml matrix is a matrix with a row for each state. The 
%columns are the number of duals, combiners, and collectors 
%respectively in each state. This matrix keeps tracks of the 
%states. 
dml(1,:) = [O 0 03; 
%last-state is the number (or row number of the drnl matrix) 
%of the previous state 
last-state = 1; 
%The very first entry (1,l) of every a matrix is simply the 
%failure rate of each component added together (times minus 
%one 1 
a(1,l) = - (dual *d-f + dual *mo-f + dual * lo-f + 
com*(mo-f+mb-f) +col*(lo-f+lb-f)); 

count = 0: 

%Function state returns the A and dml matrices for a given 
8 architecture. It is a recursive function. Please see 
%state.m for further details. 



156 APPENDIX A 

- [a, dmll - 
state(a,dual,com,col,last~state,~l,~o~f,lo~f,d~f,~~f,lb~f) 
, 

__-- - -  
%Find the reliability and number of images 

%Find the n vector. This vector is the number of spacecraft 
%acting as a collector in each state. It is used to find the 
%number of baselines for each state. 
for  i = l:size(dml,l) 
if dml(i,2) <= 0 %If there are no combiners: 
n(i) = (dml(i,1)-1) + dml(i,3); %number of virtual 
%collectors is the number of collectors ( d m l  (i, 3) ) plus the 
%number of duals (dml(i,l)) minus one to be used for the 
%combiner 
else %If there are combiners: 
n(i) = dml(i,l) + dml(i,3); %number of virtual collectors 
%is the number of collectors ( d m l  (i, 3 )  ) plus the number of 
%duals (dml(i,l)) 
end 
end 

Nb = (n.*(n-1))./2; %Number of baselines 

Nc = ceil(N./Nb) ; %Number of configurations needed 

Ti = N*Co+Co*Nc+Ot; %Time needed in each step involves time 
%per pair of pixels + time for # of configs 
%+ overhead time 
Ci = l./Ti; %Imaging rate in monthsA-1 

nun-states = length(a); 
PO = zeros(nm-states,l); %First creat initial conditions 
PO(1) = 1; 
p-final = expm(a*life)*PO; 
%Integrate the number of images through the lifetime of the 
%miss ion 
No1 = Ci*inv(a)*(expm(a*life)-eye(size(a)))*PO; 
%Reliability = probability that the system is in a working 
%state at the end of the mission lifetime 
Re1 = sun(p-fina1); 



APPENDMA 157 

%Calculate cost 
Cost = cost-model (dual,com,col,Xmo,Xlo,Xb,a,Nb) ; 

end 

%Cost per image is simply the total cost divided by the 
%number of images 
if No1 == 0 

else 

end 

Cpi = lO”9; 

Cpi = Cost/NoI; 

%If the budget constraint is broken, the objective function 
%= 0 
if Cost > B-tot 

NoI=O ; 
J=O ; 

%If budget constraint isn‘t broken - calculate objective 
8 function 
else 

end 
J = sf-noi*NoI+Rel*sf-rel+l/Cpi*sf_cpi; 

A.3 “cost-model.m” 
%This function calculates the total cost of 
%a separated spacecraft interferometer system in $M. 
%The function takes as inputs the number of 
Beach type of spacecraft (dual functioning, 
%combining and collecting) and the amount of 
%money spent to improve the reliability of the 
%combining optics, collecting optics, and bus. 
%All cost models are low fidelity and simply 
%estimate the differences in costs between 
%systems. Operations costs are assumed to scale 
%with the number of baselines. 
%This is due to two factors: 1) more baselines 
%lead to larger configurations needed 
%to keep in formation, with requires more effort 
%than smaller configurations, and 2) the larger 
%the number of baselines, the faster 
%the light can be collected, and therefore the sooner 
%the cluster needs to be moved to another configuration. 
%While this implies that clusters with more baselines 
%can collect more images in the same time, it 
%also implies that the operations cost for these clusters 



158 APPENDIX A 

%will be higher since there is more cluster movement. 

function Cost = cost-model(dua1, com, col, Xmo, Xlo, 
Xb, a,Nb) 

%Input definitions 
%dual = number of dual functioning spacecraft 
%corn = number of combining spacecraft 
%col = number of collecting spacecraft 
%Xmo = money spent to improve combining optics reliability 
%in $M 
8x10 = money spent to improve collectiong optics reliability 
%in $M 
%Xb = money spent to improve bus reliability in $M 
%a = state transition matrix 
%Nb = vector of number of baselines in each state 

%Hard inputs 
inputs 

mo-tfu 
%Cost of 
lo-tfu 
%Cost of 
ml-tfu 
%Cost of 
lb-tfu 
%Cost of 
db-tfu = 
%Cost of 
% $M 

- - COMBINER~OPTICS~THEORETICAL~FIRST~UNIT~COST; 

= COLLECTOR~OPTICS~THEORETICAL~FIRST~UNIT~COST; 

COMBINER-BUS-THEORETICAL-FIRST-UNIT-COST; 

- - COLLECTOR-BUS-THEORETICAL-FIRST-UNIT-COST; 

combiner optics theoretical first unit cost in $M 

collector optics theoretical first unit cost in $M 

combiner bus theoretical first unit cost in $M 

collector bus theoretical first unit cost in $M 
DUAL-BUS-THEORETICAL-FIRST_UNIT_COST; 
dual functioning bus theoretical first unit cost in 

- - 

ops = OPEFATIONS-COST-PER-BASELINE; 
%Operations cost per month per baseline ($M/month) 
life = MISSION-DESIGN-LIFETIME; 
%Mission design life in months 
s-lc = LEARNING-CURVE-SLOPE; 
%Learning curve slope percentage (see SMAD for recommended 
%values 
%NOTE: Entered as 95 NOT 0.95 

%Calculate manufactoring cost for each type of spc. 

%Dual TFU cost = cost of dual bus + combining optics + 
%collecting optics 
%If more than one unit is made, use the learning curve 
%percentage given to reduce the cost of future units 
dual-cost = (db-tfu + mo-tfu + lo-tfu)*(dualA(l-(log(lOO/ 
s-lc) /log(2)) ) )  ; 

%Corn TFU cost = cost of com bus + combining optics 



APPENDIX A 

i 

%If more than one unit is made, use the learning curve 
%percentage given to reduce the cost of future units 
com-cost = (mh-tfu + mo-tfu) * (corn” (l-(log(lOO/s-lc) / 
log(2) 1 )  1 ; 

% C o l  TFU cost = cost of col bus + collecting optics 
%If more than one unit is made, use the learning curve 
%percentage given to reduce the cost of future units 
COl-COSt = (lb-tfu + lo_tfu)*(colA(l-(log(lOO/s~l~)/ 
log(2) 1 )  1 ;  

%Calculate operations cost 
%Baseline operations costs are given in terms of cost per 
%collecting spacecraft per month. Therefore, each state of 
%a system will have a different cost per month. Therefore, 
%the a-matrix is required to integrate this cost, taking 
%into account the probability- of being in each state 
%throughout time, through the lifetime. 
num-states = length(a); 
PO = zeros(num-states,l); %First creat initial conditions 
PO(1) = 1; 
cost-per-state = ops*Nb; 
ops-cost - - costqer-state*inv (a) * (expm (a *life) - 
eye(size(a) ) )*PO; 

%Total cost is manufactoring cost + operations cost + money 
spent on improving reliabilities 

Cost = dual-cost+com-cost+col_cost+ops_cost+ops-cost+Xmo+Xlo+Xb; 

A.4 “Qrch-comparison.m ” 
%This file compares multiple user-defined architectures 
%in terms of total performance. Plots of the 
%number of images, cost per image, reliablity, and 
%total score for each architecture are returned. 
%This code will only vary the number of 
%satellites in the initial state and not the money 
%spent to improve the reliability of any components. 

%Matlab functions clock and etime are used. See help 
%files for both functions. These files are only used 
%to keep track of the time required to analyze an 
%architecture 



APPENDIX A 

% I N P U T S  
% N o  function inputs 
%Architecture to be evaluated and weightings 
%for each life cycle metric are defined in inputs.m file 

8 OUTPUTS 
%Plots of N o I ,  Reliability, CpI, and "score" for each 
%architecture. Each of these metrics can be reported 
%for  each architecture by calling the architecture and 
%scores matrices. In addition, the architecture matrix 
%contains the time required to analyze the system, 
%the architecture itself, and the size of the A matrix. 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

clear 

inputs 

archs = ARCHITECTURE-MATRIX; 
SF-CPI = WEIGHTING-FOR-CPI; 
%Scale factor for weighting CPI in objective function 
SF-NO1 = WEIGHTING-FOR-NOI; 
%Scale factor for weighting No1 in objective function 
SF-Re1 = WEIGHTING-FOR-REL; 
%Scale factor for weighting 

architecture = zeros(l,8); 

for i=l:size(archs,l) 

clear No1 a count time-e 

Re1 in objective function 

apsed to nun-calcs 
xo = [archs(i,l) archs(i,2) archs(i,3) 0 0 01; 
to = clock; 
[J,NoI,a,Rel,Cpi] = DV-to-J(xo) ; 
time-elapsed = etime(clack,to); 
nm-calcs = full(sun(sun(spones(a)))); 

%Save data for comparison after all architectures have 

architecture(i,:) = 

Cos t_per-Image ( i ) = Cpi ; 
Number-of-Images(i) = NoI; 
Reliabilities (i) = Rel; 

%been evaluated 

[xo(l) xo(2) xo(3) time-elapsed length(a) No1 Re1 Cpi]; 

end 

% F i n d  best of each metric 
Max-num-images = max(architecture(:,6) 1; 
Max-reliability = max(architecture(:,7) 1; 
Min-CPI = min(architecture(: ,8) ; 



APPENDIXA 

%Calculate the scores for each architecture and output.the 
%"best" architecture 
scores - - SF-CPI.*(Min-CPI./architec- 
ture(:,8))+SF_"I.*(architecture(:,6)./ 
Max_num_images)+SF_Rel.*(architecture(:,7) ./ 
Max-reliability); 

max-score = max (scores) 
score-index = find(scores == max-score); 
best-duals = nm-Qstr(architecture(score-index,l) ) ;  
best-coms = num2str(architecture(score~index,2) 1 ;  
best-cols = num2str(architecture(score-index,3)); 
disp(['The "best" architecture has ' best-duals ' dual func- 
tioning spacecraft, ' best-coms ' combiners, and ' best-cols 
' collectors.'] 1 ;  

figure %Bar graph to compare cpi between archs. 
bar (Cos tger-Image) ; 
xlabel('Architecture') 
ylabel('Cost per Image in SM') 
title('Cost per image for various architectures') 

figure %Bar graph to compare # of images between archs. 
bar(Numberof-Images); 
xlabel('Architecture') 
ylabel('Number of Images') 
title('Number of images for various architectures') 

figure %Bar graph to compare # of images between archs. 
bar(Reliabi1ities); 
xlabel('Architecture') 
ylabel('Reliabi1ity') 
title('Re1iability fo r  various architectures') 

figure %Bar graph to compare # of images between archs. 
bar ( scores 1 ; 
xlabel('Architecture') 
ylabel('Re1ative score') 
title('Re1ative scores for various architectures') 

A S  ' ~ o p i m ~ r e l i Q b ~ ~ ~ w ~ t e s t ~ m "  
%This function finds the optimal reliability possible given 
%an architecture in terms of the number of each type of 
%spacecraft and a total budget. The function returns 
%the amount of money to be spent on improving the 
%reliability of each component (Xmo, Xlo, and xb), 



162 APPENDIX A 

%the final failure rates of all components, and the 
%total reliablity of the system. 

function [Xmo, Xlo, Xb, mo-f, mb-f, lo-f, lb-f, d-f, R-f] = 
optim-reliability-w-test(com, col, dual, budget-flag, perc, 
B) 

inputs 
%User inputs 
%corn %Number of combiners in architecture 
%col %Number of collectors in architecture 
8 dua 1 %Number of dual functioning spacecraft in 

%budget-flag % O  = Use percentage of cost of spacecraft to 
%find total amount to spend on improvements 
%l = Use total budget minus cost of spacecraft 

%architecture 

%to find amount to spend on improvements 
%perc %Percentage to use if budget-flag = 0 

%(arbitrary if budget-flag = 1) 
%Enter as 20, not 0 .20 .  etc. 

%B %Total amount of money to be spent on system 
%(including improvements and new spacecraft) 

%(arbitrary if budget-flag = 0 )  

%Hard inputs 
mo = COMBINER-OPTICS-FAILURE-RATE; 
%Failure rate of combiner optics in monthsA-1 
lo = COLLECTOR-OPTICS-FAILURE-RATE; 
%Failure rate of collector optics in months"-1 
d = DUAL-BUS-FAILURE-RATE; 
%Failure rate of dual functioning bus in monthsA-l 
mb = COMBINER-BUS-FAILURE-RATE; 
%Failure rate of combiner bus in monthsA-1 
lb = COMBINER-BUS-FAILURE_RATE; 
%Failure rate of combiner bus in monthsA-1 
life = MISSION-DESIGN-LIFETIME; 
%Mission design life in months 
S = SCALE-FACTOR-FOR-INCREASE; 
%Scale factor for increased reliability 

80utpu t s 
%Xmo 
8x10 
%Xb 
%mo-f 
%mb-b 
%lo-f 
s1b-f 
%d-f 
%R-f 

%Money spent on improving combining optics 
%Money spent on improving collecting optics 
%Money spent on improving bus 

%Final combining optics failure rate in months^-l 
%Final combining bus failure rate in monthsA-1 

%Final collecting optics failure rate in monthsA-1 
%Final collecting bus failure rate in monthsA-1 
%Final dual bus failure rate in monthsA-1 
%Final reliability of system 



AF'PENDIX A 

%The d m l  matrix is a matrix with a row €or each state. The 
%columns are the number of duals, combiners, and collectors 
%respectively in each state. This matrix keeps tracks of the 
%states. 

%last-state is the number (or r o w  number of the dml matrix) 
%of the previous state 
last-state = 1; 
%The very first entry (1.1) of every a matrix is simply the 
%failure rate of each component added together (times minus 
%one) 
a(1,l) = -(dual*d + dual*mo + dual*lo + com*(mo+mb) 
+col*(lo+lb)); 

dml(1,:) = [ O  0 01; 

%Function state returns the A and d m l  matrices for a given 
%architecture. It is a recursive function. Please see 
%state.m for further details. 
[ a, dml] = state (a, dual, corn, col , last-s ta te , dml , mo , lo, d , mb ,1 b) ; 

%Find the reliability, number of images and cost 

%Find the n vector. This vector is the number of spacecraft 
%acting as a collector in each state. It is used to find the 
%number of baselines for each state. 
for i = l:size(dml,l) 
if dml(i,2) <= 0 %If there are no combiners: 
n(i) = (dnl(i,l)-l) + dml(i,3); %number of virtual 

%collectors is the number of 
%collectors (dml(i,3)) plus the number of 
%duals (dml(i,l)) minus one to be used for 

%the combiner 
else %If there are combiners: 
n(i) = dml(i.1) + dml(i,3); %number of virtual 

%collectors is the number of 
%collectors (dml(i,3)) plus the number of 

%duals (dml(i,l)) 
end 
end 

Nb = (n.*(n-l))./2; %Number of baselines 

%Find budget to spend on improvements 
if budget-flag == 0 

%Find total cost of system 



164 APPENDIX A 

system-cost = cost~model(dual,com,col,O,O,O,a,Nb); 

Impr-B = (l+perc/lOO)*system-cost; 

Impr-B = B; 

error('Budget flag not set'); 

elseif budget-flag == 1 

else 

end 

%Initialize optimal system cost 
sys~cost~opt = 0; 

%Set initial conditions €or optimization problem 
Xo = [ O  0 01; %Start with no money spent on improvements 

while sys-cost-opt < 0.98*Impr-B 
%Find optimal reliability 

sim~annealing~money~initial(dual,com,col,Impr~B,Xo); 

- [best-Xmo, best-xlo, bes t-Xb, best-Re1 I - 

xmo = best-Xmo; 
Xlo = best-Xlo; 
Xb = best-Xb; 
R-f = best-Re1 ; 

clear dml Nb a last-state 

%Change failure rates into reliabilities 
R-mo = em(-mo*life); 
R-lo = exp (-lo*life) ; 
R-d = em(-d*life); 
R-mb = e-(-&*life); 
R-lb = em(-lb*life); 

%Increase reliabilities given money spent to improve 
R-mo-f = R-mo + (1-R-m0) * (l-exp(-Xmo/S) ; 
R-lo-f = R-lo + (l-R_lo)*(l-exp(-Xlo/S) 1;  
R-mb-f = R-mb + (l-R-mb)*(l-exp(-Xb/s)); 
R-lb-f = R-lb + (l-R-lb)*(l-exp(-Xb/s)); 
R-d-f = R-d + (l-R-d)*(l-exp(-Xb/S)); 

%Change reliabilities back into failure rates 
mo-f = -(log(R-mo-f))/life; 
mb-f = -(log(R-mb-f))/life; 
lo-f = -(log(R-lo-f))/life; 
lb-f = -(log(R-lb-f))/life; 
d-f = -(log(R-d-f))/life; 



APPENDIX A 165 

%The dml matrix is a matrix with a row for each state. The 
%columns are the number of duals, combiners, and collectors 
%respectively in each state. T h i s  matrix keeps tracks of the 
%states. 
dml(1,:) = [ O  0 01; 
%last-state is the number (or r o w  number of the d m l  matrix) 
%of the previous state 
last-state = 1; 
%The very first entry (1,l) of every a matrix is simply the 
%failure rate of each component added together (times minus 
%one) 
a(l.1) = - (dual *d-f + dual *mo-f + dual * lo-f + 
com*(mo-f+mb-f) +col*(lo-f+lb-f)); 
%Function state returns the A and d m l  matrices for a given 
%architecture. It is a recursive function. Please see 
%state.m for further details. 
[a,dmll= 
s t a t e ( a , d u a l , c o m , c o l , l a s t _ s t a t e , d m l , m o _ f f  
, 

%Find the n vector. This vector is the number of spacecraft 
%acting as a collector in each state. It is used to find the 
%number of baselines for each state. 
for i = l:size(dml,l) 
if dml(i,2) e= 0 %If there are no combiners: 
n(i) = (dml(i,l)-1) + dml(i,3); %number of virtual 

%collectors is the number of 
%collectors (dml(i,3)) plus the number of 
%duals (dml(i,l)) minus one to be used for 

%the combiner 
else %If there are combiners: 
n(i) = dml(i,l) + dml(i,3); %number of virtual 

%collectors is the number of 
%collectors (dml(i,3)) plus the number of 

%duals (dml(i,l)) 
end 
end 

Nb = (n.*(n-l))./2; %Number of baselines 

sys-cost-opt = cost~model(dual,com,col,Xmo,Xlo,Xb,a,Nb) ; 

Xo= [Xmo Xlo Xb] ; 

end 



166 AF’PENDM A 

A.6 44sim-annealing.m” 
%This matlab function uses Simulated Annealing techniques 
%to find the optimum architecture for a SSI system in order 
%to maximize the objective function of the system. An 
Barchi tecture 
%is defined as the number of combiners, collectors, and 
%dual functioning spacecraft and the money spent to 
%improve the reliability of the combining and 
%collecting optics and the bus. The cooling schedule 
Buses a guess at the change in J from neighbor to neighbor 
%(delta-guess) to find the initial temperature such that 
%the probability of jumping from a better state to a worse 
%state 
%is approximately 0.75. The temperature is reduced by an 
%equal 
%amount either every iteration (if iter = step), or a user 
Bdef ined 
%number of times (step). Please note that iter needs to be 
%divisible 
%by step for this cooling schedule to work. 

%The design vector is defined-as: 
%[dual com col Xmo Xlo Xb] 
%where: dual = # of dual functioning spacecraft 
%corn = # of combining spacecraft 
%col = # of collecting spacecraft 
%Xmo = money spent on improving combining optics ($M) 
8x10 = money spent on improving collecting optics ($M) 
%Xb = money spent on improving bus ($M) 

%INPUTS 
%delta-guess = guess of how much J changes from one neighbor 

Biter = number of iterations total 
%step = number of steps down in temperature 
%NOTE: iter must be divisible by step! ! ! !  

%to another 

clear 

inputs 

B-tot = TOTAL-SYSTEM-BUDGET; 
%Total system budget(spacecraft + improvements) 
delta-guess = INITIAL-DELTA-GUESS-FOR-SA; 
% I n i t i a l  guess at difference between two neighboring design 
%vectors’ objective functions 
iter = SA-NUMBER-OF-ITERATIONS; 
%Total number of iterations through algorithm 
step = SA-STEPS-DOWN-IN-TEMPERATURE; 
%Total number of steps down in temperature 



APPENDIX A 167 

%Bounds and increments on design variables 
dualqossible = SA-DUAL-FUNCTIONING-BOUNDS; 
comgossible = SA-COMBINING-SPACECRAFT-BOUNDS; 
colgossible = SA-COLLECTING-SPACECRAFT-€3OUNDS; 
Xmoqossible = SA~MONEY~ON~COMBINING_OPTICS_BOUNDS; 
Xloqossible = SA-MONEY-ON-COLLECTING_OPTICS_BOUNDS; 
xbqossible = SA-MONEY-ON-BUS-BOUNDS; 

%First need to define the initial starting point 

[J-original, NoIo, ao, Relo, Cpiol= DV-to-J(x); 
x = [2 2 2 0 0 01; 

%Next, need to define and initial Temperature and 
%cooling schedule. Initial temperature chosen to 
%give an initial probability of going to a worse 
%solution of approximately 0.75 
Temp = ceil(-delta-guess/log(.75)); 

%Want the temperature to be very low at the end 
%of all iterations. Set the final temperature 
%to be approximately 0.001 

Temp-reduce = (O.OOl/Temp)A(l/step); 
Runsqer-step = iter/step; 
if Runsqer-step -= round(Runsqer-step) 

ber of steps' ) 
end 

error('Number of iterations does not go evenly into num- 

%Initialize the matrix data - matrix with all iterations 
%data stored. Also one with just the data 
Bused to move on to the next step stored. Rows will be: 
%[J temp dual com col Xmo Xlo Xbl 
data = zeros(l,length(x)+2); 
dataqroceed = zeros(l,length(x)+2); 

%Start the annealing loop 
for k=l:l:step 
for j = 1:l:Runsger-step; 

data(size(data,l)+l, :) = [J-original Temp X I ;  

%Use 2 DOF 
change-one = round(rand*length(x) 1 ;  
change-two = round(rand*length(x)); 

x-new = x; 

%Randomly change two elements of the design vector 
if change-one == 1 

new-index = round(rand*length(dualqossible) 1 ;  



168 APPENDIX A 

if new-index > 0 

end 

new-index = round(rand*length(com_possible)); 
if new-index > 0 

end 

new-index = round(rand*length(colsossible) ) ;  
if new-index > 0 

end 

new-index = round(rand*length(Xmo_possible) ) ;  
if new-index > 0 

end 

new-index = round(rand*length(Xlo_possible)) ;  
if new-index > 0 

end 

new-index = round(rand*length(Xbqossible) 1;  
if new-index > 0 

end 

x-new(1) = dualqossible(new-index); 

elseif change-one == 2 

x-new(2) = comqossible(new-index); 

elseif change-one == 3 

x-new(3) = colqossible(new-index); 

elseif change-one == 4 

x-new(4) = Xmoqossible(new-index); 

elseif change-one == 5 

x-new(5) = Xloqossible(new-index); 

elseif change-one == 6 

x-new(6) = Xbqossible(new-index); 

end 

if change-two == 1 
new-index = round(rand*length(dual_possible)); 
if new-index > 0 

end 

new-index = round(rand*length(comqossible) 1; 
if new-index > 0 

end 

new-index = round(rand*length(col-possible)); 
if new-index > 0 

end 

new-index = round(rand*length(Xmoqossible) 1 ;  
if new-index > 0 

end 

x-new(1) = dualqossible(new-index); 

elseif change-two == 2 

x-new(2) = comqossible(new-index); 

elseif change-two == 3 

x-new(3) = colqossible(new-index); 

elseif change-two == 4 

x-new(4) = Xmogossible(new-index); 

elseif change-two == 5 



APPENDMA 169 

new-index = round(rand*length(Xlogossible)); 
if new-index > 0 

x-new (5) = Xloqossible (new-index) ; 
end 

new-index = round(rand*length(Xbqossible) 1 ;  
if new-index > 0 

x-new ( 6 )  = Xbqossible (new-index) ; 
end 

elseif change-two == 6 

end 

%Calculate the new number of images 
%If total cost of system is greater than the budget 
%then the system is infeasible and there are no 
%images produced 

J-new = DV-to-J(x-new); 

%Save data for comparison after calculation 
data(size(data,l)+l.:) = [J-new Temp x-new]; 

%If the new design vector provides more images, go there 
if J-new >= J-original 

x = x-new; 
J-original = J-new; 

%Otherwise, only go to the new design vector with a 
%probability of e^(-delta/Temp) (boltzman factor) 
else 

test = rand; 
delta = J-original-J-new; 
prob = exp (-delta/Temp) ; 
if test < prob 

x = x-new: 
J-original = J-new; 

end 
end 

%Also save a matrix of just the data used for the next 

dataqroceed(size(datagroceed, l )+l ,  : )  = 
[J-original ~emp XI;  
format compact 
%disp(j+(k-l)*Runsqer-step) 
fprintf(l,'%d %f',j+(k-l)*Runsger-step); 

%Reduce the temperature by using the pre-determined 

Temp = Temp*Temp-reduce; 

%step 

end 

%cooling schedule 

end 



170 APPENDIX A 

%Find and output the best architecture found 
best = data(find(max(data(:,l))==data(:,l)),:); 

best-J = num2str(best(l,l)); 
best-duals = num2str(best(l,3)); 
best-corns = num2str(best(l,4)); 
best-cols = num2str(best(l,5)); 
best-Xm = num2str(best(l,6)); 
best-Xl = num2str(best(l,7)); 
best-Xb = num2str(best(1,8)); 

disp(['The final architecture has ' best-duals ' dual func- 
tioning spacecraft, ' best-coms ' combiners, and ' best-cols 
' collectors.']); 
disp(['$' best-Xb 'M, $ '  best-Xm 'M, and $ '  best-Xl 'M dol- 
lars should be spent to improve the bus, combiner optics, and 
collector optics respectively.'l); 

x-opt = best(1,3:8); 
J-opt = best(1,l); 

%Finds the matrix good-obj-func, containing all 
%architectures which have objective function values 
%within 99% of the "optimal" 
best-options = data(find(data(:,l)>=0.99*max(data(:,l))),:); 
best-options = -l*sortrows(-l*best-options,l); 
good-obj-func(1,:) = best-options(1,:); 
opt = 1; 
i = 2; 
while isempty(opt)-=l 
opt 
find(best-options(: ,8)-=best_options(l,8) Ibest-options( :,7)- 
=best_options(l,7) I ... 

- - 

best~options(:,6)-=best~options(l,6)~best~options(:,5)-=best 
- options(l,5) I... 

best_options(:,4)-=best_options(1,4) Ibest_options(:,3)-=best 
- options(l,3)); 
if isempty (opt) -=1 
good-obj-func(i, : )  = best-options(opt(l),:); 
best-options = best-options(opt(l):size(best-options,l),:); 
i = i+l; 
end 
end 

%Finds the matrix good-obj-func2, containing all 
%architectures which have objective function values 
%within 97.5% of the "optimal", but vary from this 



APPENDIX A 171 

A. 7 

%“optimaln solution by the number of at least one 
%type of spacecraft- 
good-options 
data(find(data(:,l)>=O.975*u(data(:,l))),:); 
good-options = sortrows(good-options,l); 
good-obj-func2 (1, : ) = good-options (1, : 1 ; 
opt = 1; 
i = 2 ;  
while isempty(opt)-=l 
opt = find (good-options ( : ,5 -=good-options ( 1,s 1 I . . . 
good_options(:,4)-=good_options(l,4) Igood-options(:,3)-=good~ 
- options(l,3)); 
if isempty(opt1-=l 
good_obj_func2(i,:) = good-options(opt(l),:); 
good-options = good-options(opt(1) :size(good-options,l), : ) ;  
i = i+l; 
end 
end 

“J-GA.m” 
%This matlab function uses Genetic Algorithm techniques 
%to find the optimum architecture for a SSI system in order 
%to maximize the objective function of the system. 
%An architecture 
%is defined as the number of combiners, collectors, and 
%dual functioning spacecraft and the money spent to 
%improve the reliability of the combining and 
%collecting optics and the bus. The Matlab.genetic 
%algorithm toolbox, GAOT, is used. 

%The design vector is defined as: 
%[dual com col Xmo Xlo Xbl 
%where: dual = # of dual functioning spacecraft 
Bcom = # of combining spacecraft 
%col = # of collecting spacecraft 
%Xmo = money spent on improving combining optics ($MI 
8x10 = money spent on improving collecting optics ($M) 
%Xb = money spent on improving bus ($MI 

%INPUTS 
%From 1nputs.m file 
%NOTE - to change inputs, need to change inputs-m file 
%in the GA folder of the Reliability and Productivity 
%toolbox. 
%nun-of-gen = Number of generations 
%nun-ingop = Population size 
%xOver = Crossover rate 



172 APPENDIX A 

Bmut = Mutation rate 

clear 
inputs 

nun-of-gen = NUMBER-OF-GENERATIONS; 
%Number of generations to be evaluated 
num-inqop = POPULATION-SIZE; 
%Population size per generation 
xOver = CROSSOVER-RATE; 
%Crossover (mating) rate 
mut = MUTATION-RATE; 
%Mutation rate 

%First set the bounds of the problem 
bounds=BOUNDS-FOR-GA; 
%Bounds for design variables. Note variables listed in 
%order: 
%x = [dual com col Xmo Xlo Xb]; 

%Next need to initialize population. This uses all default 
%values and is only done to be able to get to future 
%assignments when calling ga 
initPop=initializega(num-inqop,bounds,'DV-to-J-for-GA', [ I ,  
[le-6 01); 

%Call to ga. See ps file "A GA function optimization" 
%pg. 9 ,  section 4 for definitions 
DATA-FOR-GA = zeros(l,7); 
[x endPop bPop traceInfo] = ga(bounds,'DV-to_J-for-GA', [O], 
initpop, ... 

[le-6 0 11, 'maxGenTerm', num-of-gen, 'tournselect', 
0.08, 'simplexover', . . . 
% U s e  binary with precision(epsi1on) of 1 to instrict the 
%integer constraints. 

xOver, 'binaryMutation', mut); 

X 
bPop 
data = DATA-FOR-GA; 

%Finds the matrix good-obj-func, containing all 
%architectures which have objective function values 
%within 99% of the "optimal" 
best-options = data(find(data(:,l)>=O.99*mx(data[:,l))),:); 
best-options = -l*sortrows(-l*best-options,l); 
good-obj-func(1,:) = best-options(1,:); 
opt = 1; 
i = 2; 
while isempty(opt) -=1 



APF'ENDIXA 173 

- - opt 
find(best-options(:,2)-=best-options(l,2) Ibest_options(:,7)- 
=best-options(l,i') I... 

bestpptions(:,6)-=best_options(l,6) Ibest_options(:,5)-=best 
_options(l,S) I . . .  
best-options(:,4)-=best_options(l,4) Ibest_options(:,3)-=best 
-options (1,3) ) ; 
if isempty(opt)-=l 
good-obj-func(i,:) = best-options(opt(l),:); 
best-options = best-options(opt(l):size(best-options,l),:); . 
i = i+l; 
end 
end 

%Finds the matrix good-obj-func2, containing all 
%architectures which have objective function values 
%within 97.5% of the "optimal", but vary from this 
%"optimal" solution by the number of at least one 
%type of spacecraft. 
good-options= data(find(data(:,l)>=O.975*max(data(:,l))),:); 
good-options = -l*sortrows(-l*gd-options,l); 
good-obj-func2 ( 1, : ) = good-options ( 1, : 1 ; 
opt = 1; 
i = 2; 
while isempty(opt)-=l 
opt = find (good-options ( : ,4) -=good-options ( 1,4 1 I . . . 
good~options(:,3)-=good~options(l,3) )good_options(:,2)-=good 
-options(l,2) 1 ;  
if isempty(opt)-=l 
good_obj_func2(i, : )  = good-options(opt(l),:); 
good-options = good-options(opt(l):size(good-options,l) , : I ;  
i = i+l; 
end 
end 

%Finds all architectures in terms of just the number of 
%each type of spacecraft that have been tested. Used 
%to plot design space covered. 
test-options = data; 
test-options = -l*sortrows(-l*test-options,l); 
tested(1,:) = test-options(1,:); 
opt = 1; 
i = 2; 
%while ic10 
while isempty (opt) -=1 
opt = find(test-options(: ,4)-=test_options(1,4) I . .  . 



174 APPENDIX A 

test-options(:,3)-=test-options(1,3) (test_options(:,2)-=test 
- options(l,2)); 
if isempty(opt)-=l 
tested(i, : )  = test-options(opt(l), : ) ;  
test-options = test-options(opt(l):size(test-options,l),:); 
i = i+l; 
end 
end 

A.8 ‘‘sensitivity.m” 
%This function calculates the sensitivity of each life cycle 
%metric to each user defined parameter, using finite 
%differences. The parameters to be perturbed (tested) can 
%be set in the inputs.m file. The user can also set 
%the number of perturbations and amount of perturbation in 
%this file. The data for all tests is returned in the 
%architecture matrix. Note that in order to use this 
%file, the ARCHITECTURE-MATRIX in the inputs.m file must 
%contain only one architecture. 
%This will be the only architecture tested for sensitivity. 
%This architecture needs to be changed in the 1nputs.m file 
%to find the sensitivity of other architectures. 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

%INPUTS 
%No function inputs. See 1nputs.m file. 
%Parameters to vary, amount of variation, and number of 
%variation points can all be set in this file. 
8 
%OUTPUTS - 
%Lifecycle metrics (NoI, CpI, Reliability, and “score” for 
%each change in each parameter. 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

clear 

inputs 

mo = COMBINER-OPTICS-FAILURE-MTE; 
%Failure rate of combiner optics in months“-1 
lo = COLLECTOR-OPTICS-FAILURE-MTE; 
%Failure rate of collector optics in months”-1 
rn = COMBINER-BUS-FAILURE_RATE; 
%Failure rate of combiner bus in months”-1 
1 = COLLECTOR-BUS-FAILURE-WTE; 
%Failure rate of collector bus in monthsA-1 



APPENDIX A 

d = DUAL-BUS-FAILURE-RATE; 
%Failure rate of dual functioning bus in monthsA-l 
life = MISSION-DESIGN-LIFETIME; 
%Mission design life in months 
delt = TIME-STEP; 
%Time step of one day for five years expressed in months 
N = NUMBER-OF-DIFFERENCES; 
%Number of independant differences (number of pixels/2) 
S = SCALE-FACTOR-FOR-INCREASE; 
%Scale factor for increased reliability 
CO = TIME-PER-CONFIGURATION; 
%Time in months needed in each configuration 
Ot = OVERHEAD-TIME-PER-IMAGE; 
%Overhead time per image in months 
mo-tfu - - COMBINER~OPTICS~THEORETICAL~FIRSTJJNIT~COST; 
%Cost of combiner optics theoretical first unit cost in $M 
lo-tfu = COLLECTOR~OPTICS~THEORETICAL~FIRST~UNIT~COST; 
%Cost of collector optics theoretical first unit cost in $M 
mb-t f u - - COMBINER-BUS-THEORETICAL-FIRST-UNITCOST; 
% C o s t  of combiner bus theoretical first unit cost in $M 
lb-tfu - - COLLECTOR-BUS-THEORETICAL-FIRSTUNITCOST; 
%Cost of collector bus theoretical first unit cost in $M 
db-tfu = DUAL-BUS-THEORETICAL-FIRST-UNITCOST; 
%Cost of dual functioning bus theoretical first unit cost in 
8 $M 
OpS = OPERATIONS-COST-PER-BASELIm; 
%Operations cost per month per baseline (%M/month) 
s-lc = LEARNING-CURVE-SLOPE; 
%Learning curve slope percentage (see SMAD for recommended 
%values ) 
w-cpi = WEIGHTING-FOR-CPI; 
%Weighting for cpi used in objective function 
avg-cpi = AVERAGE-VALUE-FOR-CPI; 
%Average value for cpi used in objective function 
w-noi = WEIGHTING-FOR-NOI; 
%Weighting for noi used in objective function 
avg-noi = AVERAGE-VALUE-FOR-NOI; 
%Average value for noi used in objective function 
w-re1 = WEIGHTING-FOR-REL; 
%Weighting for re1 used in objective function 
avg-re1 = AVERAGE-VALUE-FOR-REL; 
%Average value for re1 used in objective function 
archs = ARCHITECTURE-MATRIX; 
%Matrix of architectures to be evaluated. 
numqoints = NUMBER-OF-SENSITIVITY-POINTS; 
%Number of points used to check the sensitivity to each 
%variable 
delta = CHANGE-IN-SENSITIVITY-POINTS; 
%Change between each point for each variable for sensitivity 
%analysis (given in decimals, not percentages - i.e. .1 not 
% l o )  



176 APPENDIX A 

%List of which parameters to calculate senstivity to. 
%Vector of ones and zeros where 1 = calculate sensitivity. 
in-vector-change = PARAMETERS-TO-CALCVLATE_SENSITIVITIVITY-TO; 

nun = size(archs,l); 
if num -= 1 

end 
error('Multip1e architectures in Architecture matrix') 

Bin-vector is the vector of inputs to calculate sensitivity 
%to 
in-vector-original = [mo lo m 1 d life S N Co Ot mo-tfu 
lo-tfu mk-tfu lb-tfu db-tfu ops s-lc w-cpi avg-cpi w-noi 
avg-noi w-re1 avg-rell; 
if length(in-vector-change)-=length(in_vector-original) 

in-vector-original') 
end 

error('1n-vector-change is not the same length as 

architecture2 = zeros (1,6) ; 
index = 1; 
while index <= length(in-vector-original) 

if in-vector-change(index) == 1 
i = -(delta*(numgoints-l))/2; 

%i defines the percentage taken off nominal value 
%of the index variable for this run 

S j  defines how many points have been evaluated (including 
j = 1; 

%this 

%k is 
%into 
%run. 

one) for this variable 

used to keep track of the column to put the results 
the architecture matrix. 5 results are stored for each 

k = 1; 

while i <= delta*(num-points-l)/Z 
in-vector = in-vector-original; 
in-vector(index1 = in-vector(index)*(l+i); 

%Clear  all variables which are not constants, num, or being 
%stored for comparison 

Clear P PO t col com dual A n nl Nc Tc Ti Ci a I M No1 ci R 
Re1 C p i  

%Get architecture specific inputs 
dual = archs(1,l); 
com = archs(l,2); 
col = archs(l,3); 



APPENDIXA 177 

%Call subroutine "DV-to-J-sens.m" to get the 

%Note that all inputs to which sensitivity will 

%from this file and not from inputs.m 

%number of images collected 

%be calculated are called 

x = [dual corn col 0 0 01; 
[J, NoI, a, Rel, Cpil = DV-to-J.-sens(x,in-vector); 

%Store the information for each architecture to 

Numberof-Images (index, j ) = NoI; 
Cost_per-Image(index,j) = Cpi; 
Reliabilities(index,j) = Rel; 

Performance(index,j) = J; 

%graph at the end 

in-changes(index,j) = in-vector(index1; 

%This is the relevant information for each method 
%to allow graphing of # of images vs. 

% #  of collectors, etc 
architecture(index,k:k+S) = 

[(l+i)*lOO in-vector(index) NoI/lOOO Cpi Re1 Jl; 

I(l+i)*lOO in-vector(index1 NoI/lOOO Cpi Re1 51; 
architecture2(size(architecture2,1)+1,:) = 

i = i + delta; %Go on to next value for variable 
j = j+l; 
k = k+6; 

end 
end %Stop if done with variable 

index = index + 1; 
end 

architecture 



178 APPENDIX A 

I 



Appendix B 

MODIFICATIONS TO GAOT 
TOOLBOX 

The publicly accessible Matlab toolbox GAOT was used to implement the genetic algo- 

rithm optimization scheme discussed in Chapter 5. The first three design variables in the 

design vector for this problem contain integer constraints (one cannot buy half a space- 

* craft) and therefore, to accommodate this constraint, a modified binary scheme was cho- 

sen for the encoding of the design vectors to “genes.” Several modifications were 

necessary in order to get the binary encoding aspects of toolbox algorithm working cor- 

rectly. Additional modifications were made to this binary encoding to ensure the integer 

constraints needed for this problem were met. Specifically, a line was added which 

rounded the float number to the nearest integer after changing from binary to float for- 

mats. Once these modifications were made, they were tested by running several iterations 

through a function which chose a random integer design vector, encoded it using the 

binary encoding scheme, decoded it, and checked the original vector against the new 

decoded vector. These tests led to confidence in the modified encoding scheme. The full 

list of modifications to the GAOT toolbox is shown below. 

Changed first line of “j2b.m” to second line. 

Changed line 152 of “gam” to: 
bits=calcbits(bounds,opts(l)*ones(l;size(bounds,l))); 

Changed lines 96-97 and 104-105 of “gam” to 
elstr=[’x=b2f(endPop(j,l:numVar),bounds,bits);end- 
Pop ( j , xZomeLength) = ‘ , . . . 
evalFN ‘ ; ‘ I ;  

179 



180 APPENDIX B 

Changed line 74 in “initia1izega.m” to: 
bits=calcbits(bounds,options(l)*ones(l,size(bounds,l))); 

Added ‘‘;’ to line 256 of “ga.m” 

Added while loop below line 256 of “ga.m” 
while isempty(cp) 

cp=find(rand(popSize,l)<xWerOps(i,l)==l); 
if rem(size(cp,l),2); cp=cp(l: (size(cp,l)-1)); end 

end 

Added rounding after line 35 of “b2$m”. Note that this line should only be 
added to enforce an integer constraint. 
fval(i)=round(fval(i)); 

Changed line 29 on “toumSe1ect.m” to (Note: this change is necessary in 
order to get tournament selection working, and has nothing to do with binary 
encryption): 
t o u r n S i z e = c e i l ( s i z e ( o l d P o p , l ) / 4 ) ;  



Appendix C 

OPTIMIZATION RESULTS 

Chapter 5 discussed two different heuristic optimization algorithms and their results when 

applied to the SSI conceptual design problem - simulated annealing and genetic algo- 

rithm. The results from these optimization algorithms were summarized in Chapter 5. 

The full results are listed in this appendix, first for simulated annealing and then for 

genetic algorithms. 

C.1 Simulated Annealing 

TABLE C.1 Simulated annealing optimization set-up 

Budget 
Iterations 

Steps 
Delta Guess 
dual bounds 
corn bounds 
col bounds 

Xmo bounds 
Xlo bounds 
Xb bounds 

$360M 
1500 
300 
0.1 

[0: 151 
[0: 1:6] 

[0:5:100] 
[0:5:100] 
[0:5: 1001 

[O: 1: 121 

181 



182 APPENDIX C 

Objective 
Function Duals Combs Cols 

1.2937 0 2 5 
1.2876 0 2 4 
1.2872 0 2 4 
1.2863 0 2 4 
1.2856 0 2 4 
1.2833 0 2 4 
1.2826 0 2 4 
1.2821 0 2 4 

TABLE C.2 “Best” architecture returned by the simulated annealing optimization 
algorithm. 

$spent $spent 
on comb. on col. $ spent 

optics optics on bus 
($M) ($M) ($MI 

10 5 25 
10 20 25 
10 15 35 
15 20 25 
10 25 35 
10 25 40 
10 30 35 
10 10 40 

“Best” A IT hi tec ture 
0 dual functioning spacecraft 

2 combining spacecraft 
5 collecting spacecraft 

$lOM on improving combining optics reliability 
$5M on improving collecting optics reliability 

$25M on improving bus reliability 



TABLE C.4 
within 99% of “optimal”. Note that the first architecture listed is the “optimal” architecture. 

Architectures returned by the simulated annealing algorithm with objective function values 

Objective 
Function 

1.2937 
1.2909 
1.2903 
1.2892 
1.289 
1.2889 
1.2886 
1.2876 
1.2876 
1.2874 
1.2873 
1.2872 
1.2866 
1.2864 
1.2863 
1.2863 
1.2858 
1.2856 
1.2855 
1.285 
1.284 
1.2837 
1.2836 
1.2833 
1.2829 
1.2827 
1.2826 
1.2823 
1.282 1 
1.2809 

Duals 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Combs 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

cols 
5 
5 
5 
5 
5 
5 
5 
5 
4 
4 
5 
4 
5 
5 
4 
5 
5 
4 
4 
4 
4 
4 
5 
4 
4 
5 
4 
5 
4 
4 

$ spent 
on comb. 

optics 
($MI 

10 
10 
10 
10 
15 
10 
15 
5 
10 
10 
5 
10 
10 
10 
15 
5 
5 
10 
15 
10 
5 
10 
25 
10 
20 
5 
10 
10 
10 
5 

$ spent 
on col. 
optics 
($M) 

5 
15 
20 
0 
5 
0 
0 
5 
20 
20 
20 
15 
25 
0 
20 
0 
15 
25 
15 
20 
20 
10 
5 
25 
20 
20 
30 
30 
10 
15 

$ spent 
on bus 
($M) 

25 
35 
25 
30 
40 
25 
30 
40 
25 
35 
25 
35 
25 
20 
25 
35 
40 
35 
35 
40 
40 
25 
40 
40 
35 
40 
35 
25 
40 
45 



184 APPENDIX C 

C.2 Genetic Algorithm 

TABLE C.5 Genetic algorithm optimization set-up 

Budget 
Generations 

Population Size 
Crossover rate 

Crossover selection 
Mutation rate 
Mutation type 
dual bounds 
com bounds 
col bounds 

Xmo bounds 
Xlo bounds 
Xb bounds 

$360M 
60 
50 
0.6 

Tournament 
0.1 

Binary 
[0: 151 
[0: 1:6] 

[O: 1: 121 
[O: 1: loo] 
[O: 1: loo] 
[O: 1: loo] 

TABLE C.6 “Best” architecture returned by the genetic algorithm. 

“Best” Architecture 
0 dual functioning spacecraft 

2 combining spacecraft 
5 collecting spacecraft 

$12M on improving combining optics reliability 
$9M on improving collecting optics reliability 

$25M on improving bus reliability 



APPENDIX C 185 

TABLE C.7 Architectures returned by the genetic algorithm with objective values within 97.5% of the 
“optimal” but which also vary from the “optimal” by the number of at least one type of spacecraft. Note that 
the first architecture listed is the “optimal” architecture. 

Objective 
Function 

1.2949 
1.2868 
1.2867 
1.2865 
1.2863 
1.2861 
1.286 
1.2858 
1.2853 
1.2851 
1.2849 
1.2845 
1.2844 
1.2842 
1.284 
1.2838 
1.2837 
1.2836 
1.2835 
1.283 
1.2829 
1.2827 
1.282 
1.2814 
1.2812 
1.28 1 
1.2807 
1.2801 
1.2799 
1.2798 
1.2793 
1.2789 
1.2788 
1.2783 
1.278 
1.2777 

Duals 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

Combs 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

Cob 
5 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 

$ spent 
on comb. 

optics 
($M) 

12 
12 
12 
11 
10 
12 
12 
16 
12 
12 
11 
7 
11 
10 
9 
6 
7 
6 
12 
10 
5 
11 
12 
5 
5 
21 
3 
4 
12 
7 
18 
5 
12 
2 
6 
12 

$ spent 
on col. 
optics 
($M) 

9 
13 
13 
13 
13 
14 
13 
17 
13 
17 
18 
14 
18 
19 
13 
13 
15 
14 
19 
21 
13 
13 
16 
14 
17 
3 
10 
18 
1 
17 
1 
13 
1 
14 
24 
6 

$ spent 
on bus 
($M) 
25 
30 
31 
31 
30 
33 
34 
25 
36 
33 
31 
28 
33 
26 
37 
30 
33 
30 
35 
31 
29 
41 
41 
36 
33 
31 
30 
30 
31 
19 
31 
42 
37 
34 
33 
48 



186 APPENDIX C 

TABLE C.7 Architectures returned by the genetic algorithm with objective values within 97.5% of the 
“optimal” but which also vary from the “optimal” by the number of at least one type of spacecraft. Note that 
the first architecture listed is the “optimal” architecture. 

Objective 
Function 

1.2773 
1.2771 
1.277 
1.2369 
1.2762 
1.2744 
1.273 1 
1.2725 
1.2723 
1.2719 
1.2718 
1.2715 
1.2713 
1.2709 
1.2702 
1.2702 

1.27 
1.2693 
1.2693 
1.2692 
1.269 1 
1.268 1 
1.268 1 
1.2678 
1.2675 
1.2672 
1.2672 
1.2669 
1.2668 
1.2662 
1.2657 
1.2657 
1.2656 
1.2652 
1.2652 
1.265 

Duals 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
2 
1 
1 
1 
1 
0 
1 
2 
1 
2 

Combs 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
3 
1 
1 
3 
1 
1 
1 
1 
1 
1 
1 
0 
1 
1 
1 
1 
3 
1 
0 
1 
1 

Cols 
4 
4 
4 
4 
4 
4 
4 
4 
3 
4 
3 
4 
3 
3 
4 
5 
3 
3 
5 
4 
3 
3 
4 
3 
3 
3 
4 
4 
3 
3 
3 
5 
3 
4 
4 
3 

$ spent 
on comb. 

optics 
($MI 

9 
5 
6 
1 
5 
5 
12 
33 
12 
3 
10 
12 
11 
12 
12 
3 
12 
12 
5 
6 
8 
11 
5 

23 
4 
11 
12 
35 
11 
21 
5 
6 
8 
5 
3 
9 

$ spent 
on col. 
optics 
($MI 

0 
2 
7 
14 
1 
17 
1 
3 
21 
22 
23 
15 
19 
16 
21 
3 
17 
14 
3 
13 
16 
18 
14 
16 
21 
14 
1 
0 
13 
13 
14 
10 
15 
17 
15 
10 

$ spent 
on bus 
($M) 

31 
36 
46 
33 
30 
47 
48 
25 
33 
43 
34 
11 
30 
34 
11 
25 
28 
32 
25 
12 
31 
45 
12 
33 
34 
27 
35 
30 
28 
31 
37 
9 

45 
29 
12 
18 



APPENDIX C 187 

Objective 
Function 

1.2649 
1.2645 
1.264 
1.264 
1.2632 
1.2626 

TABLE C.7 Architectures returned by the genetic algorithm with objective values within 97.5% of the 
“optimal” but which also vary from the “optimal” by the number of at least one type of spacecraft. Note that 
the ftrst architecture! listed is the “optimal” architecture. 

Duals Combs cols 
1 1 3 
0 3 5 
1 1 3 
1 2 4 
0 2 6 
1 1 3 

$spent 
oncomb. 

optics 
($M) 

$spent 
oncol. 
optics 
($M) 

12 
8 
12 
9 
1 

25 

$ spent 
on bus 
(SM) 

38 
1 

38 
9 
3 
16 

33 
21 
28 
14 
19 
24 



188 APPENDIX C 

Objective 
Function 

1.2949 
1.2949 
1.2949 
1.2949 
1.2949 
1.2949 
1.2949 
1.2948 
1.2948 
1.2948 
1.2948 
1.2947 
1.2947 
1.2947 
1.2946 
1.2946 
1.2945 
1.2945 
1.2945 
1.2945 
1.2945 
1.2944 
1.2944 
1.2944 
1.2944 
1.2943 
1.2943 
1.2942 
1.2942 

, 1.2942 
1.2942 
1.294 1 

1 1.2941 
1.2941 
1.294 1 

~ 1.2941 

TABLE C.8 Architectures returned by the genetic algorithm with objective function values within 99% of 
“optimal”. Note that the first architecture listed is the “optimal” architecture. 

$ spent 
on bus 
($MI 

25 
27 
27 
25 
25 
27 
28 
28 
25 
25 
27 
25 
27 
25 
23 
27 
27 
24 
27 
28 
27 
27 
25 
25 
25 
26 
27 
25 
31 
22 
23 
30 
25 
30 
22 

I 25 

Duals 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Combs 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

cols 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

$ spent 
on comb. 

optics 
($MI 

12 
12 
12 
12 
11 
11 
12 
12 
12 
11 
12 
14 
10 
12 
12 
12 
9 
12 
9 
12 
12 
9 
9 
9 
16 
9 
9 
9 
12 
11 
11 
12 
17 
11 
11 
8 

$ spent 
on col. 
optics 
($MI 

9 
10 
8 
10 
9 
10 
8 
10 
11 
8 
11 
11 
10 
7 
9 
12 
9 
12 
8 
12 
6 
10 
9 
10 
11 
11 
11 
7 
10 
10 
7 
6 
9 
6 
8 
9 



AF’PENDIX C 189 
~~ 

TABLE CS Architectures returned by the genetic algorithm with objective function values within 99% of 
“optimal”. Note that the first architecture listed is the “optimal” architecture. 

Objective 
Function 

1.294 
1.294 
1.2939 
1.2937 
1.2937 
1.2936 
1.2935 
1.2935 
1.2935 
1.2935 
1.2935 
1.2934 
1.29% 
1.2934 
1.2933 
1.2933 
1.2933 
1.2933 
1.2933 
1.2932 
1.2932 
1.2932 
1.2932 
1.2929 
1.2929 
1.2929 
1.2928 
1.2928 
1.2927 
1.2927 
1.2927 
1.2927 
1.2927 
1.2927 
1.2925 
1.2925 

Duals 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Combs 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

cols 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

$ spent 
on comb. 

optics 
($M) 

12 
17 
12 
12 
9 
9 
9 
15 
12 
12 
11 
8 
7 
10 
7 
9 
12 
12 
12 
16 
7 
12 
9 
9 
6 
9 
12 
12 
7 
12 
11 
16 
12 
12 
12 
6 

5 
9 
6 
5 
5 
5 
10 
5 
10 
4 
4 
7 
11 
4 
11 
8 
6 
12 
9 
5 
11 
4 
10 
4 
9 
14 
9 
4 
8 
12 
3 
16 
3 
8 
3 
9 

$ spent 
on bus 
($M) 
27 
24 
23 
30 
27 
26 
32 
25 
20 
27 
27 
23 
27 
27 
25 
33 
33 
20 
34 
25 
29 
30 
33 
30 
25 
30 
19 
23 
22 
19 
27 
27 
27 
19 
25 
23 



190 APPENDIX C 

TABLE C.8 Architectures returned by the genetic algorithm with objective function values within 99% of 
“optimal”. Note that the first architecture listed is the “optimal” architecture. 

Objective 
Function 

1.2925 
1.2924 
1.2923 
1.2923 
1.2923 
1.2923 
1.2923 
1.2922 
1.2922 
1.2922 
1.292 1 
1.292 1 
1.292 
1.2919 
1.2918 
1.2918 
1.2917 
1.2917 
1.2916 
1.2916 
1.2916 
1.29 14 
1.2914 
1.2913 
1.2913 
1.2913 
1.2912 
1.2912 
1.2912 
1.2911 
1.2909 
1.2908 
1.2907 
1.2907 
1.2907 
1.2906 

Duals 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Combs 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

Cols 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

$ spent 
on comb. 

optics 
($M) 

18 
7 
21 
6 
12 
21 
6 
9 
9 
5 
6 
7 
12 
21 
12 
12 
9 
5 
6 
5 
18 
4 
4 
5 
9 
12 
4 
23 
23 
11 
11 
12 
18 
9 
24 
12 

$ spent 
on col. 
optics 
($M) 

5 
4 
9 
7 
3 
12 
12 
4 
9 
9 
9 
4 
17 
9 
9 
3 
17 
9 
6 
12 
4 
8 
7 
9 
17 
9 
9 
9 
10 
9 
19 
4 
11 
3 
11 
10 

$ spent 
on bus 
($M) 

25 
27 
27 
23 ’ 

24 
25 
24 
33 
19 
25 
22 
31 
30 
22 
37 
33 
28 
23 
22 
25 
30 
27 
27 
22 
30 
17 
25 
25 
27 
17 
29 
37 
36 
21 
25 
39 



APPENDIX C 191 



192 APPENDIX C 

TABLE C.8 Architectures returned by the genetic algorithm with objective function values within 99% of 
“optimal”. Note that the first architecture listed is the “optimal” architecture. 

Objective 
Function 

1.287 1 
1.287 1 
1.2869 
1.2868 
1.2868 
1.2867 
1.2866 
1.2866 
1.2866 
1.2866 
1.2866 
1.2865 
1.2865 
1.2865 
1.2864 
1.2863 
1.2863 
1.2863 
1.2862 
1.2862 
1.2862 
1.2862 
1.286 1 
1.286 
1.286 
1.2859 
1.2858 
1.2858 
1.2858 
1.2858 
1.2857 
1.2857 
1.2856 
1.2856 
1.2855 
1.2853 

Duals 
0 
0 
0 
1 
0 
1 
1 
1 
1 
1 
0 
0 
0 
1 
1 
0 
1 
1 
1 
1 
1 
0 
1 
0 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 

~~ ~ 

Combs 
2 
2 
2 
1 
2 
1 
1 
1 
1 
1 
2 
2 
2 
1 
1 
2 
1 
1 
1 
1 
1 
2 
1 
2 
1 
1 
1 
2 
1 
1 
1 
1 
1 
1 
1 
1 

Cols 
5 
5 
5 
4 
5 
4 
4 
4 
4 
4 
5 
5 
5 
4 
4 
5 
4 
4 
4 
4 
4 
5 
4 
5 
4 
4 
4 
5 
4 
4 
4 
4 
4 
4 
4 
4 

$ spent 
on comb. 

optics 
($M) 

6 
1 
9 
12 
29 
12 
11 
12 
18 
11 
8 
6 
22 
11 
12 
7 
10 
12 
12 
11 
12 
30 
12 
6 
12 
11 
9 
9 
16 
12 
9 
15 
12 
11 
12 
11 

$ spent 
on col. 
optics 
($M) 

17 
11 
24 
13 
9 
13 
13 
14 
13 
13 
11 
10 
8 
13 
15 
19 
13 
13 
15 
13 
16 
9 
14 
4 
13 
15 
13 
24 
17 
15 
13 
18 
13 
15 
15 
15 

$ spent 
on bus 
($M) 

37 
25 
27 
30 . 

23 
31 
29 
30 
27 
30 
44 
43 
40 
31 
30 
17 
30 
33 
31 
25 
28 
25 
33 
43 
34 
25 
30 
32 
25 
33 
31 
27 
35 
33 
34 
34 



~ ~~ 

APPENDIX C 193 
~ 

TABLE C.8 Architectures returned by the genetic algorithm with objective function values within 99% of 
“optimal”. Note that the fmt architecture listed is the “optimal” architecture. 

Objective 
Function 

1.2853 
1.2853 
1.2853 
1.2852 
1.285 1 
1.285 1 
1.285 
1.285 
1.2849 
1.2849 
1.2849 
1.2849 
1.2848 
1.2848 
1.2847 
1.2846 
1.2845 
1.284 
1.2844 
1.2844 
1.2843 
1.2842 
1.2842 
1.284 

1.2839 
1.2839 
1.2838 
1.2838 
1.2838 
1.2837 
1.2837 
1.2837 
1.2836 
1.2835 
1.2835 
1.2835 

Duals 
0 
1 
1 
1 
0 
1 
1 
1 
1 
0 
1 
1 
1 
1 
0 
0 
1 
1 
0 
1 
0 
1 
0 
1 
1 
1 
0 
1 
1 
0 
1 
0 
1 
0 
1 
1 

Combs 
2 
1 
1 
1 
2 
1 
1 
1 
1 
2 
1 
1 
1 
1 
2 
2 
1 
1 
2 
1 
2 
1 
2 
1 
1 
1 
2 
1 
1 
2 
1 
2 
1 
2 
1 
1 

cols 
5 
4 
4 
4 
5 
4 
4 
4 
4 
5 
4 
4 
4 
4 
5 
5 
4 
4 
5 
4 
5 
4 
5 
4 
4 
4 
5 
4 
4 
5 
4 
5 
4 
5 
4 
4 

$ spent 
on comb. 

optics 
($M) 

16 
12 
10 
8 

29 
12 
15 
12 
21 
12 
11 
12 
8 
12 
11 
12 
7 
12 
4 
11 
31 
10 
6 
9 
8 
12 
3 
6 
11 
6 
7 
3 
6 
9 
12 
25 

12 
13 
15 
13 
8 
17 
19 
19 
15 
9 
18 
13 
13 
19 
9 

28 
14 
20 
22 
18 
9 
19 
21 
13 
13 
21 
17 
13 
16 
10 
15 
21 
14 
9 
19 
13 

$ spent 
on bus 
($M) 

12 
36 
33 
31 
33 
33 
30 
28 
31 
12 
31 
37 
33 
30 
12 
25 
28 
27 
23 
33 
20 
26 
17 
37 
36 
28 
38 
30 
37 
47 
33 
22 
30 
49 
35 
30 



194 APPENDIX C 

TABLE C.8 Architectures returned by the genetic algorithm with objective function values within 99% of 
“optimal”. Note that the first architecture listed is the “optimal” architecture. 

Objective 
Function 

1.2834 
1.2834 
1.2833 
1.2832 
1.2832 
1.2832 
1.2831 
1.283 
1.283 
1.2829 
1.2829 
1.2829 
1.2828 
1.2828 
1.2828 
1.2827 
1.2827 
1.2827 
1.2827 
1.2826 
1.2825 
1.2824 
1.2824 
1.2823 
1.2823 
1.2823 
1.282 1 
1.282 

~ 

Duals 
1 
1 
1 
1 
1 
1 
1 
0 
1 
0 
1 
1 
1 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
1 

~ 

Combs 
1 
1 
1 
1 
1 
1 
1 
2 
1 
2 
1 
1 
1 
1 
1 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
1 

Cols 
4 
4 
4 
4 
4 
4 
4 
5 
4 
5 
4 
4 
4 
4 
4 
5 
4 
4 
4 
4 
4 
4 
4 
4 
4 
5 
5 
4 

$ spent 
on comb. 

optics 
($MI 

25 
6 
6 
6 
8 
25 
12 
11 
10 
12 
5 
12 
5 
17 
12 
9 
11 
5 
5 
12 
5 
12 
8 
12 
6 
10 
29 
12 

$ spent 
on col. 
optics 
($MI 

14 
15 
13 
14 
19 
15 
21 
9 
21 
7 
13 
13 
13 
23 
21 
9 
13 
14 
14 
3 
13 
21 
19 
13 
14 
30 
3 
16 

$ spent 
on bus 
($MI 

30 
30 
25 
33 
30 
30 
33 
50 
31 
50 
29 
41 
31 
25 
34 
50 
41 
29 
30 
32 
33 
35 
34 
42 
36 
25 
34 
41 



Appendix D 

SENSITIVITY ANALYSIS RESULTS 

The analysis presented above is dependant upon 23 user defined inputs, or parameters, 

which are listed in Table 5.8. These parameters are constant for all architectures being 

evaluated, but can affect different architectures in different ways. The sensitivity of the 

solutions returned by all of the analyses discussed above to all of these parameters is cN- 

cial. Therefore a sensitivity analysis tool has been developed to find the sensitivity of the 

models to these parameters. Please see Chapter 5 for a full discussion of this tool. This 

appendix will present the full results of the case study of the sensitivity of two architec- 

tures. The first architecture consists of no dual functioning spacecraft, two combining 

spacecraft, five collecting spacecraft, $12M spent to improve the reliability of the combin- 

ing optics, $9M spent to improve the reliability of the collecting optics, and $25M spent to 

improve the reliability of the bus. The second architecture consists of one dual function- 

ing spacecraft, one combining spacecraft, four collecting spacecraft, $12M spent to 

improve the reliability of the combining optics, $13M spent to improve the reliability of 

the collecting optics, and $30M spent to improve the reliability of the bus. The results are 

shown for a sensitivity analysis of the architectures defined only the number of each type 

of spacecraft first, followed by the results of a sensitivity analysis when the architectures 

are defined with the money spent to improve the reliability of components included. 

195 



1% APPENDIX D 

1 28 

- f 1 2 6 -  

>” 124.. 
5 
p 
L 12-,  6 118-  

3 1 16 
0 

1147 

: 1.26 

______ 

+ld. Im. 4 - -  
122--- 

- -  - - - - - - 
-- 

I I I ,  I I , ,  I 

8 1.16 

1.14 
95 96 97 98 99 100101 lM103104105 

Perant Nominal ’mo’ nlw 

- 126-  

>” 124 

1.28, 

-- 

- 3 126 

124 
0 

C 
Ij 122 

It 1 2  
t 
5i 118 # 116 

114 

3 1.28- ’ 1.24 - 
i j 1 . 2 2 - :  i 111:: 
8 l.16 - 

1.14 4 

95 96 97 98 99 100 101 102 103 104 105 

: : : : = : : : = :- - 
. . , , . , , , ,  I 

I 

It 
118.- 

0 

+Id. lm. 4 

1 2 - /  

1 1 6 - - /  

I Porant Nombal lo’value 

1.28 - 

- 3 1.28- 
>” 1.24 - 

1.22- 
-m- 16. lm. 4 i””: - = = -  --• 

g 1.16 - 
1.141 I ,  I I I I I 

95 98 97 98 99 100 101 102 103 104 105 

Pemnt Nominal ’m’valw 

1.28, I 

95 98 97 9B W 100 101 102 103 104 105 

petant N ~ ~ I I U I  n’ VJIW 

1 
+ 16. lm. 4 

-. 

1.18 

‘ 1.16 -~ . 

-. 

1147  I I I I I I , , I I 

95 96 97 98 SS 100 101 102 103104 105 

Percent Nominal ‘Co’nlw 

+od, 2m. 51 

Figure D.1 Sensitivit analysis of the architectures given above, defined by only the 
number o r each type of spacecraft. 



APPENDIX D 197 

1.28 1 1 I 

95 96 97 96 99 1001M102103104105 

Percent lsaRinrl W-W value 

1.28 T I I 
f 1.28 

? -I 1.24 

8 1.16 I 
1.14 , , , . , , , , , , -1 

95 96 97 96 99 100101 102 103 104 105 

PeCCOM WNl %-Ull' -1- 

1.28 - 
: 1.26- s 
I 1.24. 

P 1.2-* 

g 1.16 -. 

-m- Id. lm. 4 
1.22- 

{ 1.18 
- - - - _  - - -  

1.14. , , a . , , . , , 
95 96 97 96 99 100101 102 103104 105 

Pomnt Nominal 'opd valu 
- 

1.24 

'4 1.22 

I 
1.14 l.16 - 

95 96 97 98 99 100 101 lU2 lo3 104 105 

P.mnt Nomhul ?no-* value 

1.28 I I 

~ ~ ~ ~ - : ~ l  - -  
1.16 

1.14 
0 

95 96 97 98 SS 100 101 102 lo3 104 105 
p.mn( Ilon*rpI na-w value 

1.24 - 
$1.22--= : 2 = = = = = -  
P 1.2 - - 8 118-  

- - - - = - -  

3 1 1 6 -  
0 

1 1 4 7 .  I I s I v . ~ l .  

95 96 97 96 99 100101 102103104 105 
Percent Nominal 'db-Ull'vakr 

95 98 97 96 99 100 101 102 103 104 105 

Pomm worninrl *-le U I W  

F i r e D . 1  Sensitivit analysis of the architectures given above, defined by only the 
number o $! each type of spacecraft. 



198 APPENDIX D 

4 %  I ..L" , I 

1.18 

1.16 

95 96 97 98 99 100 101 102 103 104 105 

Percent Nominal 'w-cpi'valua 

1 28 1 

95 96 97 98 99 100 101 102 103 104 105 

Percent Nominal 'wW_noi'valua 

1.28 

- 9 1.26 I 

I 

114 I I I I I I . r I ~  

95 96 97 98 99 100 101 102 103 104 105 

Perant Nominal 'w-ml'value 

1.28 

- 3 1.28- ' 1.24 -7- 
c 1.2 - / - 

1 1 8 -  

0 1 1 6 -  yN 
t Id. lm. 41 

1.144 , , I a I I , , a I 
95 98 97 98 99 100101 102103104105 

Perant Nominal 'avo-cpi'value 

1144  , , I I I . . , , I 
95 96 97 98 99 100 101 102 103 104 105 

Percent Nominal 'avo-nol' valw 

-_._____ 1 2 8 -  - 

- : 1.26- 

1.24- 

0 
1.14-r I I I I I , -  

95 96 97 98 99 100 101 102 103 104 105 

Percent Nominal 'avo-ml'value 

Figure D.1 Sensitivit analysis of the architectures given above, defined by only the 
number o i! each type.of spacecraft. 



AF'PENDIX D 199 

3 p 1.32- 
1.3 - f 

IL 1.28 .' 

im. 

1.24- 

1.34 , I I 

7 
I I . I I I , r 

1.244 , , . , , . , , , , I 
95 98 97 96 99 100 101 102 103 lo( 105 

1.34 

3 p 1.32- 

+w. m. a -1 +id. 1m. u 
13- 

1 I 
I 1.34, I I I 1-34 

3 1.32 

95 96 97 98 99 100 1Ol 102 103 10) 105 
Percent lbmi~l5* nhr I I 1'24 

95 96 97 98 99 100101 102103 104105 
Percent Nominal -s-lc- nku 

I 1 1  I 

I 1.34, I I 

95 96 97 98 gP 100 101 lcn 103 104 105 
Pemnt Nominal F-cpl'nnhr 

95 96 97 98 99 100 101 102 103 104 105 
Pement Nominal %rg_cpl'nlue 

1.241 . , , I , , , , , , 
95 96 97 98 99 100 101 102 103 101 105 

FigureD.2 Sensitivit analysis of the architectures given above, defined by both the 
number-o f each type of spacecraft and the money spent to improve compo- 
nent reliabilities. 



200 APPENDIX D 

Figure D.2 Sensitivit analysis of the architectures given above, defined by both the 
number o i each type of spacecraft and the money spent to improve compo- 
nent reliabilities. 



Appendix E 

MATLAB TOOLBOX DESCRIPTION 

A Matlab toolbox containing all the tools and models previously described has been 

assembled. Table E.l lists all the files found in the toolbox, with a brief description of 

what the file does and it’s inputs and outputs for each. Please note that Table E.1 does not 

include all the files contained in the GAOT toolbox even though these files are included in 

the Reliability and Productivity toolbox. Table Y lists all the userdefined input variables, 

including a description, the units used, and the default value for all variables. 

201 



202 APPENDIX E 

Filename Description 

TABLE E.l 
Matlab toolbox. 

Descriptions, major inputs, and major outputs of files in the Reliability and Productivity 

Major Inputs Major Outputs 

inputs.m 

DV-to-J.m 

state.m 

cost-model. m 

Contains all user 
defined inputs, or 

parameters. Called in 
other functions to set 
the values of these 

parameters. 
Finds the objective 
function, number of 

images, reliability, and 
cost per images of a 
given architecture. 

Recursive function 
which generates the 

state-transition matrix 
for a given system. 

Finds the total 
life-cycle cost of the 

given system. 

; Tools 
NIA 

Design vector (con- 
sists of the number of 

dual functioning, 
combining, and collect- 
ing spacecraft respec- 
tively, and the money 
spent to improve com- 
bining optics, collect- 
ing optics, and the bus 
in $M), inputs.m file 

Current state-transition 
matrix, matrix with 
previously defined 

states, last state called, 
number of functioning 
spacecraft of each type, 
and failure rates of all 

components 
Number of each type of 

spacecraft, money 
spent to improve 

reliabilities of each 
component, state- 
transition matrix, 

number of baselines in 
each state, and inputs.m 

file 

NIA 

Number of 
Images (NoI), 
reliability, cost 

per image 

matrix, and 
objective 
function 

(CpI), A- . 

State-transition 
matrix and 

matrix of state 
definitions 

Cost of system 
in $M 



APPENDIX E 203 

TABLE El 
Matlab toolbox. 

Descriptions, major inputs, and major outputs of files in the Reliability and Productivity 

Filename 
auto-a.m 

DV-to-NoLm 

Symbolic-a- 
mutrkm 

reliizbiliv-w- 
symbolic-am 

Description 
Sets up initial 

conditions and calls 
state-m to 

automatically generate 
state-transition matrix. 

Finds the expected total 
number of images a 
given system will 

produce. 
Finds the state- 

transition matrix of a 
system symbolically. 

Finds the reliability of 
a system from the 

symbolic state-transi- 
tion matrix. 

arch_ 
comparison. m 

Major Inputs 
Number of each type of 
spacecraft, failure rates 
of each component, and 

inputs.m file 

Design vector and 
inputs.m file 

Number of each type of 
spacecraft 

Number ofeach type of 
spacecraft, money 

spent to improve the 
reliability of each 

component, symbolic 
state-transition matrix, 
total system budget, 

matrix of state 
definitions, number of 
baselines in each state, 

and inputs.m file 
Comparison Tools 

~~ 

Compares user given 
architectures in terms 
of total performance. 
Spends no money on 
improving component 

reliabilities. 

~~ 

Major Outputs 
State-transition 

matrix and 
matrix of state 

definitions 

No1 

Matrix of state 
definitions, 
number of 

baselines in 
each state, and 
symbolic state- 

transition 
matrix 

~ ~~ 

Reliability 

inputs-m file NoI, reliability, 
CpI, and 

“score” for each 
arc hi tecture 



204 APPENDIX E 

TABLE El 
Matlab toolbox. 

Descriptions, major inputs, and major outputs of files in the Reliability and Productivity 

Filename 
arch- 

comparison-w- 
imprm 

arch- 
comparison- 

full-x.m 

arch- 
comparison- 

inputs. m 

arch- 
comparison-w- 
impr-inputs. m 

arch- 
comparison- 

full-x-inputs.m 

~ 

Description 
Compares user given 
architectures in terms 
of total performance. 

Includes optimal 
division of money to 
improve component 

reliabilities. 
~ ~~ 

same as 
arch-comparison.m but 
with matrix of architec- 
tures from inputs.m file 
containing money spent 

on reliabilities of 
components. 

Same as 
arch-comparis0n.m but 
with matrix of architec- 

tures to be evaluated 
entered as input to 

function and not from 
inputs-m file. 

Same as 
a rch-compa rison-w- 
imprm but with matrix 
of architectures to be 
evaluated entered as 
input to function and 

not from inputs.m file. 
Same as 

arch-compa rison 3 1 1 -  
x.m but with matrix of 

architectures to be 
evaluated entered as 
input to function and 

not from inputs.m file. 

Ma-ior Inputs 
inputs.m file 

inputs.m file 

Matrix of architectures 
to be evaluated, 

inputs.m file 

Matrix of architectures 
to be evaluated, 

inputs.m file 

Matrix of architectures 
to be evaluated, 

inputs.m file 

Major Outputs 
NoI, reliability, 

CpI, and 
“score” for each 

architecture 

NoI, reliability, 
CpI, and 

“score” for each 
architecture 

NoI, reliability, 
CpI, and 

“score” for each 
architecture 

NoI, reliability, 
CpI, and 

“score” for each 
architecture 

NoI, reliability, 
CpI, and 

“score” for each 
architecture 



AF’PENDIX E 205 

TABLE El 
Matlab toolbox. 

Descriptions, major inputs, and major outputs of files in the Reliability and Productivity 

Filename 
optim- 

reliability-w- 
test. m 

sim-annealing- 
money-initia1.m 

sim-annealing- 
moq-tune.m 

Description 
Optimization program 

to find the optimal 
method of dividing 

money among 
components to improve 

reliabilities. Used in 
arch_comparison-w- 

impxm. 

Simulated annealing 
program to find the 

“optimal” method of 
dividing money among 
components to improve 

reliabilities. Used in 
arch-comparison-w- 

impxm 

Same as 
sim-annealing-money- 

intia1.m but with 
certain parameters 
given as function 
inputs, not from 

inputxm file. Used for 
tuning 

sim-anmaling-money- 
initia1.m 

Major Inputs 
Number of combining, 

collecting, and dual 
functioning spacecraft, 
method of finding total 

budget, total system 
budget or percent of 
original system cost, 

and inputs.m file 

Number of combining, 
collecting, and dual 

functioning spacecraft, 
total system budget, 

initial design vector in 
terms of money spent 
on each component, 

and inputs.m file 

Number of combining, 
collecting, and dual 

functioning spacecraft, 
total system budget, 

initial design vector in 
terms of money spent 
on each component, 

initial guess at 
difference between two 

neighboring vectors 
reliabilities, number of 
iterations, and inputsm 

file 

Major Outputs 
“Optimal” 
amount of 

money to spend 
on improving 
each compo- 

nent’s reliability 
in $M, final 

failure rates of 
components, 
and “optimal” 

reliability 
“Optimal” 
amount of 

money to spent 
on improving 
each compo- 

nen t ’s reliability 
in $M and 

“optimal” sys- 
tem reliability 

“Optimal” 
division of 
money and 

reliability for 
each test 



206 APPENDIX E 

Description 

TABLE E.l 
Matlab toolbox. 

Descriptions, major inputs, and major outputs of files in the Reliability and Productivity 

Major Inputs Filename 
Finds the inverse of the 

reliability of a given 
system. Used as the 
objective function in 

sim-annealing-money- 
initial. m. 

Calls 
sim-anneal ing-money- 

tune.m with different 
input values to com- 

pare parameter settings 
and tune the algorithm. 

Same as 
optim-relia bil ity-w- 

test.m but with no 
sanity-check built in to 

see if simulated 
annealing algorithm 

found a local optimum. 

inverse- 
re1 ia bil ity. m 

Money spent to 
improve reliability of 

each component, 
number of each type of 

spacecraft, total 
system budget, and 

inputs.m file 
NIA 

Number of combining, 
collecting, and dual 

functioning spacecraft, 
method of finding total 

budget, total system 
budget or percent of 
original system cost, 

and inputs.m file 

optim- 
reliability-tune. 

m 

optim- 
re1 ia bility. m 

design-space- 
view.m 

Shows multiple views 
of the design space of 
finding optimal way to 

divide money to 
improve reliability, 

using two of the three 
design variables for 

each view. 

Number of each type of 
spacecraft, total 

system budget, and 
which variables to 

enumerate design space 
with 

Simulated Annealing 

Major Outputs 
Inverse 

reliability 

“Optimal” 
division of 

money and total 
system 

reliability for 
each test 

“Optimal” 
amount of 

money to spend 
on improving 
each compo- 

nent’sreliability 
in $M, final 

failure rates of 
components , 

and “optimal” 
reliability 

Plots of design 
space of two 
variables at a 

time 



APPENJXXE 207 

TABLE El Descriptions, major inputs, and major outputs of files in the Reliability and Productivity 
Matlab toolbox. 

Filename 
sim-annealing. 

m 

sim-annealing- 
tune.m 

sim-annealing- 
tune-&a.m 

Description 
Finds the “optimal” 

architecture, in terms of 
performance for a 

given budget, defined 
by the number of each 
type of spacecraft and 

the money spent to 
improve the reliability 

of each component. 

Same as 
sim-annealing.m but 

with certain 
parameters given as 

function inputs instead 
of from inputs.m file. 

Used to tune simulated 
annealing algorithm. 

Calls 
sim-annealing-tune.m 

with different input 
values to compare 

parameter settings and 
tune the algorithm. 

Major Inputs 
inputs.m file 

Number of iterations, 
number of steps down 
in temperature, initial 
guess at difference in 

objective function 
between two neighbor- 

ing design vectors, 
total system budget, 

and inputs-m file 
NIA 

Major Outputs 
“Optimal” 

architecture and 
objective func- 
tion, all archi- 

tectures 
consided 

‘‘good enough” 
(objective func- 

tions within 
99% and 97.5% 

of the “opti- 
mal”, with the 
latter required 

to have a differ- 
ent number of 

at least one type 
of spacecraft) 

“Optimal” 
architectureand 

objective 
function 

“Optimal” 
architectureand 

objective 
function for 

each test 

Genetic Algorithms 



208 APPENDIX E 

TABLE E.l Descriptions, major inputs, and major outputs of files in the Reliability and productivity 
Matlab toolbox. 

Filename 
J-GA.m 

ga.m 

J-GA-tune.m 

ga-tune. m 

Description 
Calls genetic algo- 

rithm program to find 
the “optimal” architec- 
ture, in terms of perfor- 

mance for a given 
budget, defined by the 
number of each type of 

spacecraft and the 
money spent to 

improve the reliability 
of each component. 

Code to run the actual 
genetic algorithm. 

Same as J-GA.m but 
with certain parame- 
ters given as function 
inputs instead from 

inputs.m. Used to tune 
genetic algorithm. 

Major Inputs 
inpufsm file in GA 

folder 

See code 

Number of generations, 
number of individuals 
per generation, muta- 
tion rate, crossover 

rate, and inputs.m file 
in GA folder 

Calls J-GA-tune.m 
with different input 
values to compare 

parameter settings and 
tune the algorithm. 

NIA 

Major Outputs 
“Optimal” 

architecture and 
objective func- 
tion, all archi- 

tectures 
considered 

“good enough”’ 
(objective func- 

tions within 
99% and 97.5% 

of the “opti- 
mal”, with the 
latter required 

to have a differ- 
ent number of 

at least one type 
of spacecraft) 

“Optimal” 
architecture and 

objective 
function 

“OptimaI” 
architecture and 

objective 
function 

“Optimal” 
architecture and 

objective 
function for 

each test 
Sensitivity Analysis 



3 
APPENDIX E u)9 

TABLE El 
Matlab toolbox. 

Descriptions, major inputs, and major outputs of files in the Reliability and Productivity 

Filename 
sensitivity. m 

sensitivityfirll- 
x.m 

DV-to-J-sens. 
m 

cost-model- 
sensitivity. m 

Description 
Finds the sensitivity of 
a given architecture to 

user defined parameters 
(does not include 
money to improve 

component 
reliabilities). 

~~ 

Findsthe sensitivity of 
a given architecture to 

user defined parameters 
(does include money 

to improve component 
re1 i abi li ties). 

Same as DV-to-J.m 
but with parameter val- 
ues as function inputs 

instead of from 
inputs.m file. 

Same as cost-moddm 
but with parameter val- 
ues as function inputs 

instead of from 
inputs.m file. 

Major Inputs 
inputs.m file 

Design vector, inputs.m 
file 

~~ ~ 

Design vector, parame- 
ter values 

Number of each type of 
spacecraft, money 

spent to improve reli- 
abilities of each com- 
ponen t, state- transi tion 

matrix, number of 
baselines in each state, 
and parameter values 

Major Outputs 
Change in NoI, 
CpI, reliability, 
and objective 
function for 

each change in 
each parameter 

Change in NoI, 
CpI, reliability, 
and objective 
function for 

each change in 
each parameter 
NoI, Reliabil- 

ity, CpI, A- 
matrix, and 
objective 
function 

Cost of system 
in $M 



210 APPENDIX E 

Global Variable Name 

TABLE E.2 List of user-defined inputs for Reliability and Productivity toolbox 

Default 
Description Value Units 

COMBINER-OITICS- Failure rate of combiner 

COLLECTOR-OPIICS- Failure rate of collector 
FAILURE-RATE optics 

FAILURE-RATE optics 
COMBINER-BUS- 
FAILURE-RATE 

Failure rate of combiner bus 

0.00417 months-' 

0.00417 months-' 

0.00417 months-' ' 

COLLECTOR-BUS- 
FAILURE-RATE 

DUAL-BUS- 
FAILURE-RATE 

Failure rate of collector bus 0.00417 months- ' 
Failure rate of dual 0.004 17 months-' 

functioning bus 
MISSION-DESIGN- Mission design lifetime 60 months 

TIME-STEP Time step for discrete A- 0.3288 months 

NUMBER-OF- Number of pairs of W 512 UV points 
DIFFERENCES 

LIFETIME 

matrix methods 

points needed to take an 
image 

time needed W pair and per 
configuration 

TIME-PER- Constant scale factor for 4 . 6 3 ~  months 
CONFIGURATION 

' OVERHEAD-TIME-PER Overhead time per image 2 .78~10-~  months 
- IMAGE 

REQUIRED- Number of spacecraft 1 spacecraft 
~ COMBINING-SPC capable of combining light 

required for system to func- 
~ tion 

REQUIRED- 
COLLECTING-SPC 

REQUIRED-TOTAL- 
SPC 

Number of spacecraft 2 spacecraft 
capable of collecting light 

required for system to func- 
tion 

Number of total spacecraft 3 spacecraft 
required for system to func- 

ti on 



APPENDIX E 211 

Global Variable Name 

TABLE E2 List of user-defined inputs for Reliability and Productivity toolbox 

Description 

95 

360 

coMl3INrm_omcs~ 
THEORETICAL-FIRST- 

UNIT-COST 

% 

$M 

Theoretical first unit cost of 
combining optics 

N/A 

0.2 

COLLECTOR-OF"ICS- 
THEORETICAL-FIRST- 

UNIT-COST 

[- - -1 or 
[---$M 
$M $MI 

$M 

Theoretical first unit cost of 
collecting optics 

COMBINER_BUS- 
THEORETICAL-FIRST- 

UNIT-COST 

Theoretical first unit cost of 
combining spacecraft bus 

COLLECTOR-BUS- 
THEORETICALFIRST- 

UNIT-COST 

Theoretical first unit cost of 
collecting spacecraft bus 

DUAL-BUS- 
THEORETXCiU.-FIRST- 

UNIT-COST 

Theoretical first unit cost of 
dual functioning 
spacecraft bus 

OPERATIONS-COST- I PER-BASELINE 
Cost to operate system 

LEARNINGCURVE- 
SLOPE 

TOTAL_SYSTEM- 
BUDGET 

co 

Learning curve slope 
percentage 

Maximum total amount of 
money to be spent on 

the system 
lparison and Optimization T 

ARCHITECTURE- 
MATRIX 

AVERAGE-VALUE_FOR 

AVERAGE-VALUE-FOR 

Matrix of architectures to be 
evaluated. Order is [dual 

corn col]. Note: for use with 
arch-comparison firll-x. m 
architectures order is [dual 

com col Xmo Xlo Xb]. 
Average, or normal, value 
for CpI (cost per image) 

Average, or normal, value 
for NoI(number of images) 
Average, or normal, value 

for reliability 

Value 

,Is I 

1250 I images I 
I 0.8 I N/A 



212 APPENDIX E 

Global Variable Name 

TABLE E.2 List of user-defined inputs for Reliability and Productivity toolbox 

Description 
Default 
Value 

, Initial guess as difference 
between two neighboring 
design vectors’ reliability 

(full optimization) 

Scale factor for increasing 
reliability with money spent 

spc. to find total budget 
1 = Use a given total 

budget 

flag = 0 

between two neighboring 
design vectors’ reliability 

(arch-comparison-w-impr) 
Number of iterations for SA 
optimization algorithm for 

only dividing money 
(a rch-compa rison-w-imp r) 

0 = Use percentage of cost 

Percentage to use if budget 

Initial guess as difference 

Units 
NIA 

NIA 

25 

0 

20 

0.01 

500 

WEIGHTING-FORCPI 

SA-NUMBER-OF- 
ITERATIONS 

Weighting for cost (CpI) in 
objective function and 

“score” 

Number of iterations for SA 
optimization algorithm 

0.4 

SA-STEPS-DOWN-IN- 
TEMPERATURE 

WEIGHTING-FOR-NO1 

Total number of steps down 
in temperature 

Weighting for productivity 
(NoI) in objective 

function and “score” 

SA-DUAL- 
FUNCTIONING- 

BOUNDS 

0.3 

Bounds and increments on 
the number of dual function- 

ing spacecraft for SA 

WEIGHTING-FOR-EL Weighting for reliability in 
objective function and 

“score” 

0.3 NIA 

NIA SCALE-FACTOR-FOR- 
INCREASE 

BUDGET-FLAG NIA 

% PERCENT-OF-BUDGET 
- FOR-IMPR 

DELTAGUESS-FOR-S A 
- MONEY 

NIA 

~~ 

iterations 

varies with 
objective 
function 
( N W  

SA-MONEY- 
ITERATIONS 

INITIAL-DELTA-GUESS 
- FOR-SA 

0.1 

iterations 

NIA 300 

[0:1:5] spacecraft 



APPENDIX E 213 

Description 
Bounds and increments on 
the number of combining 

spacecraft for SA 
Bounds and increments on 
the number of collecting 

spacecraft for SA 
Bounds and increments on 
the money spent to improve 

combining optics for SA 
Bounds and increments on 
the money spent to improve 

collecting optics for SA 
Bounds and increments on 
the money spent to improve 

the bus for SA 

evaluated for GA 
Population size for GA 

Crossover (mating) rate for 
GA 

Mutation rate for GA 

Number of generations to be 

TABLE E2 List of user-defined inputs for Reliability and Productivity toolbox 

Default 
Value 
[0: 1 :6] 

[0: 1:9] 

[0:5: 1001 

[0:5: 1001 

[ 0 5 :  1001 

60 

50 
0.6 

0.1 

I Global Variable Name 

Bounds for design variables 
for GA. Note: variables 

listed in order [dual corn col 
Xmo Xlo Xb] 

S A-COMBINING- 
BOUNDS 

[0:5; 
0:6; 
0:9; 

0 100; 
0: loo; 
0: loo] 

SA-COLLEC"G- 
BOUNDS 

3 

SA-MONEY-ON- 
COMBINING-OITICS- 

BOUNDS 

points 

S A-MONEY-ON- 
COLLECTING-OPI'ICS- 

BOUNDS 
SA-MONEiY-ON- 

BUS-BOUNDS 

NUMBER-OF- I GENERATIONS 
I POPULATION-SIZE 

I cRossovER-RATE 

BOUNDS-FOR-GA 

NUMBER-OF- 
SENSITIVITY-POINTS 

CHANGE-IN- I SENSITIVITY-POINTS 

Units 
spacecraft 

spacecraft 

$M 

$M 

$M 

generations 

individuals 
NIA 

NIA 

Number of points used to 
check the sensitivity to each 

variable 
Change between each point 
for each variable for sensi- 

tivity analysis (given in 



214 APPENDIX E 

TABLE E.2 List of user-defined inputs for Reliability and Productivity toolbox 

Global Variable Name Description 
Default 
Value Units 

ONE-SENSITIVITY- 
POINT 

PARAMETERS-TO- 
CALCULATE_ 

SENSITIVITY-TO 

One point to perturb 
parameters to. Only used in 

sensitivity_oneqoint. m 
~ 

Vector of which parameters 
to calculate sensitivity to. 

Zero if not calculating sensi- 
tivity, one if calculating 

sensitivity 

0.05 

ones( 1,23) 

NIA 

NIA 


